Abstract
Living cells regulate key cellular processes by spatial organization of catalytically active proteins in higher-order signalling complexes. These act as organizing centres to facilitate proximity-induced activation and inhibition of multiple intrinsically weakly associating signalling components, which makes elucidation of the underlying protein–protein interactions challenging. Here we show that DNA origami nanostructures provide a programmable molecular platform for the systematic analysis of signalling proteins by engineering a synthetic DNA origami-based version of the apoptosome, a multiprotein complex that regulates apoptosis by colocalizing multiple caspase-9 monomers. Tethering of both wild-type and inactive caspase-9 variants to a DNA origami platform demonstrates that enzymatic activity is induced by proximity-driven dimerization with half-of-sites reactivity and, furthermore, reveals a multivalent activity enhancement in oligomers of three and four enzymes. Our results offer fundamental insights in caspase-9 activity regulation and demonstrate that DNA origami-based protein assembly platforms have the potential to inform the function of other multi-enzyme complexes involved in inflammation, innate immunity and cell death.
Original language | English |
---|---|
Pages (from-to) | 295-306 |
Number of pages | 12 |
Journal | Nature Catalysis |
Volume | 3 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Mar 2020 |