Abstract
We demonstrate that charge-density-wave devices with quasi-two-dimensional 1T-TaS2 channels show remarkable immunity to bombardment with 1.8 MeV protons to a fluence of at least 1014 H+cm−2. The current–voltage characteristics of these devices do not change as a result of proton irradiation, in striking contrast to most conventional semiconductor devices or other two-dimensional devices. Only negligible changes are found in the low-frequency noise spectra. The radiation immunity of these “all-metallic” charge-density-wave devices is attributed to the quasi-2D nature of the electron transport in the nanoscale-thickness channel, high concentration of charge carriers in the utilized charge-density-wave phases, and two-dimensional device design. Such devices, capable of operating over a wide temperature range, can constitute a crucial segment of future electronics for space, particle accelerator and other radiation environments.
Original language | English |
---|---|
Pages (from-to) | 8380-8386 |
Number of pages | 7 |
Journal | Nanoscale |
Volume | 11 |
Issue number | 17 |
DOIs | |
Publication status | Published - 7 May 2019 |
Externally published | Yes |