TY - JOUR
T1 - Prospective follow-Up of cortical interruptions, bone density, and micro-structure detected on HR-pQCT
T2 - A study in patients with rheumatoid arthritis and healthy subjects
AU - Peters, M.
AU - van den Bergh, J.P.
AU - Geusens, P.
AU - Scharmga, A.
AU - Loeffen, D.
AU - Weijers, R.
AU - van Rietbergen, B.
AU - van Tubergen, A.
PY - 2019/6/15
Y1 - 2019/6/15
N2 - Objectives: The purpose of the study was to prospectively investigate change (repair or progression) in the number, surface area and volume of cortical interruptions, bone density (vBMD) and micro-structural parameters assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) in finger joints of patients with rheumatoid arthritis (RA) treated with synthetic disease modifying anti-rheumatic drugs (sDMARDs) and/or biologic DMARDs (bDMARDs) over a 1-year follow-up period, and in comparison with healthy subjects (HS). Methods: Thirty-two patients with RA (221 joints, 53% on bDMARDs) and 32 HS (117 joints) were assessed at baseline and after 1 year using semi-automatic analysis of HR-pQCT images. Mean changes (group level) and the proportion of joints (joint level) with changes beyond the least significant change were calculated. Results: At baseline, 530 interruptions were identified in patients, and 136 in HS. The mean of the interruption parameters did not significantly change in either group Mean vBMD decreased more in patients than in HS (− 4.4 versus − 1.1 mgHA/cm3, respectively). In patients versus HS, proportionally more joints showed repair in interruption volume (6.6% versus 1.7%, respectively) and loss of vBMD (26.7% versus 12.9%, respectively). In patients on sDMARDs versus patients on bDMARDs, proportionally more joints showed progression in the number of interruptions and loss of vBMD (6.1% versus 1.8% and 31.3% versus 17.2%, respectively). Conclusions: HR-pQCT is able to quantify bone repair and progression. Cortical interruption-, vBMD-, and micro-structure were impaired in RA, of which vBMD and micro-structure further deteriorated, particularly in patients on sDMARDs.
AB - Objectives: The purpose of the study was to prospectively investigate change (repair or progression) in the number, surface area and volume of cortical interruptions, bone density (vBMD) and micro-structural parameters assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) in finger joints of patients with rheumatoid arthritis (RA) treated with synthetic disease modifying anti-rheumatic drugs (sDMARDs) and/or biologic DMARDs (bDMARDs) over a 1-year follow-up period, and in comparison with healthy subjects (HS). Methods: Thirty-two patients with RA (221 joints, 53% on bDMARDs) and 32 HS (117 joints) were assessed at baseline and after 1 year using semi-automatic analysis of HR-pQCT images. Mean changes (group level) and the proportion of joints (joint level) with changes beyond the least significant change were calculated. Results: At baseline, 530 interruptions were identified in patients, and 136 in HS. The mean of the interruption parameters did not significantly change in either group Mean vBMD decreased more in patients than in HS (− 4.4 versus − 1.1 mgHA/cm3, respectively). In patients versus HS, proportionally more joints showed repair in interruption volume (6.6% versus 1.7%, respectively) and loss of vBMD (26.7% versus 12.9%, respectively). In patients on sDMARDs versus patients on bDMARDs, proportionally more joints showed progression in the number of interruptions and loss of vBMD (6.1% versus 1.8% and 31.3% versus 17.2%, respectively). Conclusions: HR-pQCT is able to quantify bone repair and progression. Cortical interruption-, vBMD-, and micro-structure were impaired in RA, of which vBMD and micro-structure further deteriorated, particularly in patients on sDMARDs.
KW - Bone mineral density
KW - Cortical interruptions
KW - Disease modifying anti-rheumatic drugs
KW - High-resolution peripheral quantitative computed tomography
KW - Rheumatoid arthritis
UR - http://www.scopus.com/inward/record.url?scp=85060864708&partnerID=8YFLogxK
U2 - 10.1007/s00223-019-00523-2
DO - 10.1007/s00223-019-00523-2
M3 - Article
C2 - 30707271
SN - 0171-967X
VL - 104
SP - 571
EP - 581
JO - Calcified Tissue International
JF - Calcified Tissue International
IS - 6
ER -