TY - JOUR
T1 - Proposal for the effect of chondrocyte volume on the mineralization rate
AU - Tanck, E.
AU - Dijk, van, M.E.
AU - Errington, R.J.
AU - Blankevoort, L.
AU - Burger, E.H.
AU - Huiskes, H.W.J.
PY - 2001
Y1 - 2001
N2 - Mineralization of the cartilage matrix in embryonic long bones and growth plates is preceded by hypertrophy of chondrocytes. We hypothesize that the swollen hypertrophic cells exert pressure on the matrix, and that this pressure plays a role in the cartilage mineralization process. For this study, we asked the following questions. First, does the ratio of cell volume to matrix volume (CV/MV) increase from the proliferation to the hypertrophic zone in embryonic long bones? Second, is there a correlation between cell-volume increase and the mineralization rate in embryonic and postnatal long bones? The CV/MV ratios in the proliferation and hypertrophic zones in embryonic mouse metatarsals at 17 days of gestational age were determined using morphometric analyses. Confocal laser scanning microscopy was used to determine chondrocyte volumes. Cell volumes in the proliferation and hypertrophic zones of embryonic mouse metatarsals at 17 days of gestational age were compared to the ones in the metatarsal growth plates of nine-day-old mice. The mineralization rate was determined using photographs at 24-hour intervals. The CV/MV increased significantly from the proliferation to the hypertrophic zone, from 1.30±0.15 (mean ± standard deviation) to 1.80±0.18. The relative increase in cell volume from the proliferation to the hypertrophic zone was 1.6 for embryonic cells, i.e. from 370±101 mm3 to 610±107 mm3, and 2.8 for postnatal cells, i.e. from 280±41 mm3 to 786±155 mm3 (p
AB - Mineralization of the cartilage matrix in embryonic long bones and growth plates is preceded by hypertrophy of chondrocytes. We hypothesize that the swollen hypertrophic cells exert pressure on the matrix, and that this pressure plays a role in the cartilage mineralization process. For this study, we asked the following questions. First, does the ratio of cell volume to matrix volume (CV/MV) increase from the proliferation to the hypertrophic zone in embryonic long bones? Second, is there a correlation between cell-volume increase and the mineralization rate in embryonic and postnatal long bones? The CV/MV ratios in the proliferation and hypertrophic zones in embryonic mouse metatarsals at 17 days of gestational age were determined using morphometric analyses. Confocal laser scanning microscopy was used to determine chondrocyte volumes. Cell volumes in the proliferation and hypertrophic zones of embryonic mouse metatarsals at 17 days of gestational age were compared to the ones in the metatarsal growth plates of nine-day-old mice. The mineralization rate was determined using photographs at 24-hour intervals. The CV/MV increased significantly from the proliferation to the hypertrophic zone, from 1.30±0.15 (mean ± standard deviation) to 1.80±0.18. The relative increase in cell volume from the proliferation to the hypertrophic zone was 1.6 for embryonic cells, i.e. from 370±101 mm3 to 610±107 mm3, and 2.8 for postnatal cells, i.e. from 280±41 mm3 to 786±155 mm3 (p
U2 - 10.1142/S0218957701000404
DO - 10.1142/S0218957701000404
M3 - Article
SN - 0218-9577
VL - 5
SP - 37
EP - 44
JO - Journal of Muskuloskeletal Research
JF - Journal of Muskuloskeletal Research
IS - 1
ER -