TY - JOUR
T1 - Proposal for defining voltage dip-related responsibility sharing at a point of connection
AU - Bhattacharyya, S.
AU - Cobben, J.F.G.
AU - Kling, W.L.
PY - 2012
Y1 - 2012
N2 - Modern customers use many electronics devices that are quite sensitive to the quality of power supply. Voltage dip is an important power quality (PQ) issue that can cause damage to various customers' devices and might lead to partial or complete interruption of the operation of an installation. Hence, a customer should know the approximate number and types of voltage dips that can happen at the point of connection (POC) so that he can take preventive measure to protect his installation from voltage dip-related problems. In the recent years, the EN50160 standardisation committee has developed a classification methodology to define voltage dips. The committee also recommended that voltage dip-related responsibilities should be clearly defined in the standard to solve disagreements among the different parties in the network. In this study, first voltage dip simulation is done on a typical medium voltage (MV) network, and approximate number of events in a year at a customer's POC is estimated. Furthermore, the guidelines are proposed to distinguish voltage dip-related responsibilities of the involved parties in the network. Finally, a case study is described in which the proposed guidelines about voltage dip-related responsibilities are applied.
AB - Modern customers use many electronics devices that are quite sensitive to the quality of power supply. Voltage dip is an important power quality (PQ) issue that can cause damage to various customers' devices and might lead to partial or complete interruption of the operation of an installation. Hence, a customer should know the approximate number and types of voltage dips that can happen at the point of connection (POC) so that he can take preventive measure to protect his installation from voltage dip-related problems. In the recent years, the EN50160 standardisation committee has developed a classification methodology to define voltage dips. The committee also recommended that voltage dip-related responsibilities should be clearly defined in the standard to solve disagreements among the different parties in the network. In this study, first voltage dip simulation is done on a typical medium voltage (MV) network, and approximate number of events in a year at a customer's POC is estimated. Furthermore, the guidelines are proposed to distinguish voltage dip-related responsibilities of the involved parties in the network. Finally, a case study is described in which the proposed guidelines about voltage dip-related responsibilities are applied.
U2 - 10.1049/iet-gtd.2011.0801
DO - 10.1049/iet-gtd.2011.0801
M3 - Article
SN - 1751-8687
VL - 6
SP - 619
EP - 626
JO - IET Generation, Transmission & Distribution
JF - IET Generation, Transmission & Distribution
IS - 7
ER -