Abstract
Predictive process monitoring (PPM) offers multiple benefits for enterprises, e.g., the early planning of resources. The success of PPM-based actions depends on the prediction quality and the explainability of the prediction results. Both, prediction quality and explainability, can be influenced by unseen behavior, i.e., events that have not been observed in the training data so far. Unseen behavior can be caused by, for example, concept drift. Existing approaches are concerned with strategies on how to update the prediction model if unseen behavior occurs. What has not been investigated so far, is the question how unseen behavior itself can be predicted, comparable to approaches from machine learning such as zero-shot learning. Zero-shot learning predicts new classes in case of unavailable training data by exploiting context information. This work follows this idea and proposes an approach to predict unseen process behavior, i.e., unseen event labels, based on process event streams by exploiting compliance constraints as context information. This is reasonable as compliance constraints change frequently and are often the cause for concept drift. The approach employs state transition systems as prediction models in order to explain the effects of predicting unseen behavior. The approach also provides update strategies as the event stream evolves. All algorithms are prototypically implemented and tested on an artificial as well as real-world data set.
Original language | English |
---|---|
Title of host publication | Business Process Management Forum |
Editors | Chiara Di Francescomarino, Andrea Burattin, Christian Janiesch, Shazia Sadiq |
Place of Publication | Cham |
Publisher | Springer |
Pages | 127-144 |
Number of pages | 18 |
ISBN (Electronic) | 978-3-031-41623-1 |
ISBN (Print) | 978-3-031-41622-4 |
DOIs | |
Publication status | Published - 1 Sept 2023 |
Event | 21st International Conference on Business Process Management, BPM 2023 - Utrecht, Netherlands Duration: 11 Sept 2023 → 15 Sept 2023 |
Publication series
Name | Lecture Notes in Business Information Processing (LNBIP) |
---|---|
Volume | 490 |
ISSN (Print) | 1865-1348 |
ISSN (Electronic) | 1865-1356 |
Conference
Conference | 21st International Conference on Business Process Management, BPM 2023 |
---|---|
Abbreviated title | BPM 2023 |
Country/Territory | Netherlands |
City | Utrecht |
Period | 11/09/23 → 15/09/23 |
Funding
Acknowledgements. This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number 277991500.
Keywords
- Compliance Constraints
- Context Information
- Predictive Process Monitoring
- Unseen Behavior