Predicting the collapse of turbulence in stably stratified boundary layers

B.J.H. Wiel, van de, A.F. Moene, G.J. Steeneveld, O.K. Hartogensis, A.A.M. Holtslag

Research output: Contribution to journalArticleAcademicpeer-review

58 Citations (Scopus)
101 Downloads (Pure)


The collapse of turbulence in a plane channel flow is studied, as a simple analogy of stably stratified atmospheric flow. Turbulence is parameterized by first-order closure and the surface heat flux is prescribed, together with the wind speed and temperature at the model top. To study the collapse phenomenon both numerical simulations and linear stability analysis are used. The stability analysis is nonclassical in a sense that the stability of a parameterized set of equations of a turbulent flow is analyzed instead of a particular laminar flow solution. The analytical theory predicts a collapse of turbulence when a certain critical value of the stability parameter d/L (typically O(0.5–1)) is exceeded, with d the depth of the channel and L the Obukhov length. The exact critical value depends on channel roughness to depth ratio z0/d. The analytical predictions are validated by the numerical simulations, and good agreement is found. As such, for the flow configuration considered, the present framework provides both a tool and a physical explanation for the collapse phenomenon.
Original languageEnglish
Pages (from-to)251-274
JournalFlow, Turbulence and Combustion
Issue number3
Publication statusPublished - 2007


Dive into the research topics of 'Predicting the collapse of turbulence in stably stratified boundary layers'. Together they form a unique fingerprint.

Cite this