TY - GEN
T1 - Practical and secure solutions for integer comparison
AU - Garay, J.
AU - Schoenmakers, B.
AU - Villegas Bautista, J.A.
PY - 2007
Y1 - 2007
N2 - Yao’s classical millionaires’ problem is about securely determining whether x¿>¿y, given two input values x,y, which are held as private inputs by two parties, respectively. The output x¿>¿y becomes known to both parties.
In this paper, we consider a variant of Yao’s problem in which the inputs x,y as well as the output bit x¿>¿y are encrypted. Referring to the framework of secure n-party computation based on threshold homomorphic cryptosystems as put forth by Cramer, Damgård, and Nielsen at Eurocrypt 2001, we develop solutions for integer comparison, which take as input two lists of encrypted bits representing x and y, respectively, and produce an encrypted bit indicating whether x¿>¿y as output. Secure integer comparison is an important building block for applications such as secure auctions.
In this paper, our focus is on the two-party case, although most of our results extend to the multi-party case. We propose new logarithmic-round and constant-round protocols for this setting, which achieve simultaneously very low communication and computational complexities. We analyze the protocols in detail and show that our solutions compare favorably to other known solutions.
AB - Yao’s classical millionaires’ problem is about securely determining whether x¿>¿y, given two input values x,y, which are held as private inputs by two parties, respectively. The output x¿>¿y becomes known to both parties.
In this paper, we consider a variant of Yao’s problem in which the inputs x,y as well as the output bit x¿>¿y are encrypted. Referring to the framework of secure n-party computation based on threshold homomorphic cryptosystems as put forth by Cramer, Damgård, and Nielsen at Eurocrypt 2001, we develop solutions for integer comparison, which take as input two lists of encrypted bits representing x and y, respectively, and produce an encrypted bit indicating whether x¿>¿y as output. Secure integer comparison is an important building block for applications such as secure auctions.
In this paper, our focus is on the two-party case, although most of our results extend to the multi-party case. We propose new logarithmic-round and constant-round protocols for this setting, which achieve simultaneously very low communication and computational complexities. We analyze the protocols in detail and show that our solutions compare favorably to other known solutions.
U2 - 10.1007/978-3-540-71677-8_22
DO - 10.1007/978-3-540-71677-8_22
M3 - Conference contribution
SN - 978-3-540-71676-1
T3 - Lecture Notes in Computer Science
SP - 330
EP - 342
BT - Proceedings of the 10th International Conference on Practice and Theory in Public-Key Cryptography (PKC 2007) 16-20 April 2007, Beijing, China
A2 - Okamoto, T.
A2 - Wang, X.
PB - Springer
CY - Berlin
T2 - conference; PKC 2007, Beijing, China; 2007-04-16; 2007-04-20
Y2 - 16 April 2007 through 20 April 2007
ER -