Abstract
Yao’s classical millionaires’ problem is about securely determining whether x > y,
given two input values x, y, which are held as private inputs by two parties, respectively. The
output x > y becomes known to both parties.
In this paper, we consider a variant of Yao’s problem in which the inputs x, y as well as the output
bit x > y are encrypted. Referring to the framework of secure n-party computation based
on threshold homomorphic cryptosystems as put forth by Cramer, Damg°ard, and Nielsen at
Eurocrypt 2001, we develop solutions for integer comparison, which take as input two lists of encrypted
bits representing x and y, respectively, and produce an encrypted bit indicating whether
x > y as output. Secure integer comparison is an important building block for applications such
as secure auctioning.
In this extended abstract, our focus is on the two-party case, although most of our results extend
to the multi-party case. We propose new logarithmic- and constant-round protocols for this
setting, which achieve simultaneously very low communication and computational complexities.
We analyze the protocols in detail and show that our solutions compare favorably to other known
solutions.
Original language | English |
---|---|
Title of host publication | Online Proceedings 1st Benelux Workshop on Information and System Security (WISSEC 2006, Antwerpen, Belgium, November 8-9, 2006) |
Publisher | Katholieke Universiteit Leuven |
Publication status | Published - 2006 |