Power exhaust in the snowflake divertor forL- and H-mode TCV tokamak plasmas

W.A.J. Vijvers, G. Canal, B. Labit, H. Reimerdes, B. Tal, S. Coda, G.C. De Temmerman, B.P. Duval, T.W. Morgan, J.J. Zielinski

Research output: Contribution to journalArticleAcademicpeer-review

37 Citations (Scopus)
5 Downloads (Pure)

Abstract

The snowflake (SF) divertor is a plasma configuration that may enable tokamak operation at high performance and lower peak heat loads on the plasma-facing components than a standard single-null divertor. This paper reports on the results of experiments performed on the TCV tokamak in both the low- and high-confinement regimes, wherein the divertor configuration was continuously varied between a standard single-null and a ‘SF-plus’, which features auxiliary strike points (SPs) in the private flux region of the primary separatrix. The measured edge properties show that, in L-mode, the fraction of the exhaust power reaching the additional SPs is small. During edge-localized modes, up to ~20% of the exhausted energy is redistributed to the additional SPs even at an x-point separation of 0.6 times the plasma minor radius, thereby reducing the peak heat flux to the inner primary SP by a factor of 2–3. The observed behaviour is qualitatively consistent with a proposed model for enhanced cross-field transport through the SF’s relatively large region of low poloidal field by instability-driven convection.
Original languageEnglish
Article number023009
Number of pages10
JournalNuclear Fusion
Volume54
Issue number2
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Power exhaust in the snowflake divertor forL- and H-mode TCV tokamak plasmas'. Together they form a unique fingerprint.

Cite this