Pore breathing of metal-organic frameworks by environmental transmission electron microscopy

L.R. Parent, C.H. Pham, J.P. Patterson, M.S. Denny, S.M. Cohen, N.C. Gianneschi (Corresponding author), F. Paesani (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

56 Citations (Scopus)

Abstract

Metal-organic frameworks (MOFs) have emerged as a versatile platform for the rational design of multifunctional materials, combining large specific surface areas with flexible, periodic frameworks that can undergo reversible structural transitions, or "breathing", upon temperature and pressure changes, and through gas adsorption/desorption processes. Although MOF breathing can be inferred from the analysis of adsorption isotherms, direct observation of the structural transitions has been lacking, and the underlying processes of framework reorganization in individual MOF nanocrystals is largely unknown. In this study, we describe the characterization and elucidation of these processes through the combination of in situ environmental transmission electron microscopy (ETEM) and computer simulations. This combined approach enables the direct monitoring of the breathing behavior of individual MIL-53(Cr) nanocrystals upon reversible water adsorption and temperature changes. The ability to characterize structural changes in single nanocrystals and extract lattice level information through in silico correlation provides fundamental insights into the relationship between pore size/shape and host-guest interactions.

Original languageEnglish
Pages (from-to)13973-13976
Number of pages4
JournalJournal of the American Chemical Society
Volume139
Issue number40
DOIs
Publication statusPublished - 11 Oct 2017
Externally publishedYes

Fingerprint

Dive into the research topics of 'Pore breathing of metal-organic frameworks by environmental transmission electron microscopy'. Together they form a unique fingerprint.

Cite this