Plasma-assisted atomic layer deposition: basics, opportunities and challenges

H.B. Profijt, S.E. Potts, M.C.M. Sanden, van de, W.M.M. Kessels

Research output: Contribution to journalArticleAcademicpeer-review

536 Citations (Scopus)
962 Downloads (Pure)

Abstract

Plasma-assisted atomic layer deposition (ALD) is an energy-enhanced method for the synthesis of ultra-thin films with Å-level resolution in which a plasma is employed during one step of the cyclic deposition process. The use of plasma species as reactants allows for more freedom in processing conditions and for a wider range of material properties compared with the conventional thermally-driven ALD method. Due to the continuous miniaturization in the microelectronics industry and the increasing relevance of ultra-thin films in many other applications, the deposition method has rapidly gained popularity in recent years, as is apparent from the increased number of articles published on the topic and plasma-assisted ALD reactors installed. To address the main differences between plasma-assisted ALD and thermal ALD, some basic aspects related to processing plasmas are presented in this review article. The plasma species and their role in the surface chemistry are addressed and different equipment configurations, including radical-enhanced ALD, direct plasma ALD, and remote plasma ALD, are described. The benefits and challenges provided by the use of a plasma step are presented and it is shown that the use of a plasma leads to a wider choice in material properties, substrate temperature, choice of precursors, and processing conditions, but that the processing can also be compromised by reduced film conformality and plasma damage. Finally, several reported emerging applications of plasma-assisted ALD are reviewed. It is expected that the merits offered by plasma-assisted ALD will further increase the interest of equipment manufacturers for developing industrial-scale deposition configurations such that the method will find its use in several manufacturing applications.
Original languageEnglish
Article number050801
Pages (from-to)050801-1/26
Number of pages26
JournalJournal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films
Volume29
Issue number5
DOIs
Publication statusPublished - 2011

Fingerprint Dive into the research topics of 'Plasma-assisted atomic layer deposition: basics, opportunities and challenges'. Together they form a unique fingerprint.

Cite this