Physical regulation of the self-assembly of tobacco mosaic virus coat protein

Research output: Contribution to journalArticleAcademicpeer-review

88 Citations (Scopus)


We present a statistical mechanical model based on the principle of mass action that explains the main features of the in vitro aggregation behavior of the coat protein of tobacco mosaic virus (TMV). By comparing our model to experimentally obtained stability diagrams, titration experiments, and calorimetric data, we pin down three competing factors that regulate the transitions between the different kinds of aggregated state of the coat protein. These are hydrophobic interactions, electrostatic interactions, and the formation of so-called "Caspar" carboxylate pairs. We suggest that these factors could be universal and relevant to a large class of virus coat proteins.
Original languageEnglish
Pages (from-to)1501-1512
JournalBiophysical Journal
Issue number4
Publication statusPublished - 2006


Dive into the research topics of 'Physical regulation of the self-assembly of tobacco mosaic virus coat protein'. Together they form a unique fingerprint.

Cite this