Photocatalytic NOx abatement: mathematical modeling, CFD validation and reactor analysis

Jessica de O.B. Lira, Natan Padoin, Vitor J.P. Vilar, Cintia Soares (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

9 Citations (Scopus)

Abstract

A 2D CFD model was implemented for the numerical simulation of NO x abatement in a photocatalytic reactor, considering the effect of relative humidity (10–60%), light intensity (0.3–13 W⋅m −2) and inlet NO concentration (0.1–1.0 ppm). Significant differences of NO x concentration at the catalytic surface and bulk gas were found (Δ max of ∼12% and ∼16% for NO and NO 2, respectively) and corrections were proposed to achieve intrinsic rate laws from a model available in the literature. An analysis of the reactor performance was conducted and a nonlinear behavior was observed when the channel height (H) was varied. A point of maximum for the integral rate of NO and NO 2 consumption as a function of H was found (Δ NO of ∼2% and ∼-1% for H→2H→4H; Δ NO 2 of ∼46% and -8.5% for H→2H→4H). Additionally, the NO conversion decreased from ∼29% to ∼7% and the selectivity decreased from ∼85% to ∼80% (passing through a point of minimum at 2H) when the height was varied in the range H-4H. When comparing the results from the CFD simulations and the predictions of a plug flow model, deviations for NO conversion and selectivity increased with H (Δ max of ∼2% and ∼45%, respectively).

Original languageEnglish
Pages (from-to)145-153
Number of pages9
JournalJournal of Hazardous Materials
Volume372
DOIs
Publication statusPublished - 15 Jun 2019
Externally publishedYes

Keywords

  • CFD
  • NOx
  • Photocatalysis
  • Validation
  • Reactor analysis

Cite this