Photoactivated Polymersome Nanomotors: Traversing Biological Barriers

Jingxin Shao, Shoupeng Cao, David S. Williams, Loai K.E.A. Abdelmohsen (Corresponding author), Jan C.M. van Hest (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Synthetic nanomotors are appealing delivery vehicles for the dynamic transport of functional cargo. Their translation toward biological applications is limited owing to the use of non-degradable components. Furthermore, size has been an impediment owing to the importance of achieving nanoscale (ca. 100 nm) dimensions, as opposed to microscale examples that are prevalent. Herein, we present a hybrid nanomotor that can be activated by near-infrared (NIR)-irradiation for the triggered delivery of internal cargo and facilitated transport of external agents to the cell. Utilizing biodegradable poly(ethylene glycol)-b-poly(d,l-lactide) (PEG-PDLLA) block copolymers, with the two blocks connected via a pH sensitive imine bond, we generate nanoscopic polymersomes that are then modified with a hemispherical gold nanocoat. This Janus morphology allows such hybrid polymersomes to undergoing photothermal motility in response to thermal gradients generated by plasmonic absorbance of NIR irradiation, with velocities ranging up to 6.2±1.10 μm s−1. These polymersome nanomotors (PNMs) are capable of traversing cellular membranes allowing intracellular delivery of molecular and macromolecular cargo.

Original languageEnglish
Pages (from-to)17066-17073
Number of pages8
JournalAngewandte Chemie
Volume132
Issue number39
Early online date13 Jun 2020
DOIs
Publication statusPublished - 21 Sept 2020

Keywords

  • intracellular delivery
  • nanomotors
  • pH-sensitive polymer
  • photothermal effect
  • polymersomes

Fingerprint

Dive into the research topics of 'Photoactivated Polymersome Nanomotors: Traversing Biological Barriers'. Together they form a unique fingerprint.

Cite this