TY - JOUR
T1 - Phase matching using an isotropic nonlinear optical material
AU - Fiore, A.
AU - Berger, V.
AU - Rosencher, E.
AU - Bravetti, P.
AU - Nagle, J.
PY - 1998
Y1 - 1998
N2 - Frequency conversion in nonlinear optical crystals is an effective means of generating coherent light at frequencies where lasers perform poorly or are unavailable. For efficient conversion, it is necessary to compensate for optical dispersion, which results in different phase velocities for light of different frequencies. In anisotropic birefringent crystals such as LiNbO3 or KH2PO4 ('KDP'), phase matching can be achieved between electromagnetic waves having different polarizations. But this is not possible for optically isotropic materials, and as a result, cubic materials such as GaAs (which otherwise have attractive nonlinear optical properties) were little exploited for frequency conversion applications. Quasi-phase-matching schemes, which have achieved considerable success in LiNbO3, provide a route to circumventing this problem, but the difficulty of producing the required pattern of nonlinear properties in isotropic materials, particularly semiconductors, has limited the practical utility of such approaches. Here we demonstrate a different route to phase matching-based on a concept proposed by Van der Ziel 22 yr ago (Appl. Phys. Lett., 1975) which exploits the artificial birefringence of multilayer composites of GaAs and oxidized AlAs. As GaAs is the material of choice for semiconductor lasers, such optical sources could be integrated in the core of frequency converters based on these composite structures. [on SciFinder (R)]
AB - Frequency conversion in nonlinear optical crystals is an effective means of generating coherent light at frequencies where lasers perform poorly or are unavailable. For efficient conversion, it is necessary to compensate for optical dispersion, which results in different phase velocities for light of different frequencies. In anisotropic birefringent crystals such as LiNbO3 or KH2PO4 ('KDP'), phase matching can be achieved between electromagnetic waves having different polarizations. But this is not possible for optically isotropic materials, and as a result, cubic materials such as GaAs (which otherwise have attractive nonlinear optical properties) were little exploited for frequency conversion applications. Quasi-phase-matching schemes, which have achieved considerable success in LiNbO3, provide a route to circumventing this problem, but the difficulty of producing the required pattern of nonlinear properties in isotropic materials, particularly semiconductors, has limited the practical utility of such approaches. Here we demonstrate a different route to phase matching-based on a concept proposed by Van der Ziel 22 yr ago (Appl. Phys. Lett., 1975) which exploits the artificial birefringence of multilayer composites of GaAs and oxidized AlAs. As GaAs is the material of choice for semiconductor lasers, such optical sources could be integrated in the core of frequency converters based on these composite structures. [on SciFinder (R)]
U2 - 10.1038/35091
DO - 10.1038/35091
M3 - Article
SN - 0028-0836
VL - 391
SP - 463
EP - 466
JO - Nature
JF - Nature
ER -