Personalizing energy expenditure estimation using physiological signals normalization during activities of daily living

M. Altini, J. Penders, R.J.M. Vullers, O.D. Amft

Research output: Contribution to journalArticleAcademicpeer-review

13 Citations (Scopus)

Abstract

In this paper we propose a generic approach to reduce inter-individual variability of different physiological signals (HR, GSR and respiration) by automatically estimating normalization parameters (e.g. baseline and range). The proposed normalization procedure does not require a dedicated personal calibration during system setup. On the other hand, normalization parameters are estimated at system runtime from sedentary and low intensity activities of daily living (ADLs), such as lying and walking. When combined with activity-specific energy expenditure (EE) models, our normalization procedure improved EE estimation by 15 to 33% in a study group of 18 participants, compared to state of the art activity-specific EE models combining accelerometer and non-normalized physiological signals.
Original languageEnglish
Pages (from-to)1797-1811
JournalPhysiological Measurement
Volume35
Issue number9
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'Personalizing energy expenditure estimation using physiological signals normalization during activities of daily living'. Together they form a unique fingerprint.

Cite this