Abstract
We investigate the stabilization of perturbed nonlinear systems using output-based periodic event-triggered controllers. Thus, the communication between the plant and the controller is triggered by a mechanism, which evaluates an output- and input-dependent rule at given sampling instants. We address the problem by emulation. Hence, we assume the knowledge of a continuous-time output feedback controller, which robustly stabilizes the system in the absence of network. We then implement the controller over the network and model the overall system as a hybrid system. We design the event-triggered mechanism to ensure an input-to-state stability property. An explicit bound on the maximum allowable sampling period at which the triggering rule is evaluated is provided. The analysis relies on the construction of a novel hybrid Lyapunov function. The results are applied to a class of Lipschitz nonlinear systems, for which we formulate the required conditions as linear matrix inequalities. The effectiveness of the scheme is illustrated via simulations of a nonlinear example.
Original language | English |
---|---|
Title of host publication | 2018 IEEE Conference on Decision and Control, CDC 2018 |
Place of Publication | Piscataway |
Publisher | Institute of Electrical and Electronics Engineers |
Pages | 957-962 |
Number of pages | 6 |
ISBN (Electronic) | 978-1-5386-1395-5 |
ISBN (Print) | 978-1-5386-1396-2 |
DOIs | |
Publication status | Published - 18 Jan 2019 |
Event | 57th IEEE Conference on Decision and Control, (CDC2018) - Miami, United States Duration: 17 Dec 2018 → 19 Dec 2018 Conference number: 57 |
Conference
Conference | 57th IEEE Conference on Decision and Control, (CDC2018) |
---|---|
Abbreviated title | CDC 2018 |
Country | United States |
City | Miami |
Period | 17/12/18 → 19/12/18 |