Patient specific, imaging-informed modeling of rhenium-186 nanoliposome delivery via convection-enhanced delivery in glioblastoma multiforme

Ryan T. Woodall, David A. Hormuth, Chengyue Wu, Michael R.A. Abdelmalik, William T. Phillips, Ande Bao, Thomas J.R. Hughes, Andrew J. Brenner, Thomas E. Yankeelov (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

16 Citations (Scopus)

Abstract

Convection-enhanceddeliveryofrhenium-186(186Re)-nanoliposomesisapromisingapproachto provideprecisedeliveryoflargelocalizeddosesofradiationforpatientswithrecurrentglioblastoma multiforme.Currentapproachesfortreatmentplanningutilizingconvection-enhanceddeliveryare designedforsmallmoleculedrugsandnotforlargerparticlessuchas186Re-nanoliposomes.Toenable thetreatmentplanningfor186Re-nanoliposomesdelivery,wehavedevelopedacomputationalfluid dynamicsapproachtopredictthedistributionofnanoliposomesforindividualpatients.Inthiswork,we construct,calibrate,andvalidateafamilyofcomputationalfluiddynamicsmodelstopredictthespatiotemporaldistributionof186Re-nanoliposomeswithinthebrain,utilizingpatient-specificpre-operative magneticresonanceimaging(MRI)toassignmaterialpropertiesforanadvection-diffusiontransport model.Themodelfamilyiscalibratedtosinglephotonemissioncomputedtomography(SPECT) imagesacquiredduringandaftertheinfusionof186Re-nanoliposomesforfivepatientsenrolledina PhaseI/IItrial(NCTNumberNCT01906385),andisvalidatedusingaleave-one-outbootstrapping methodologyforpredictingthefinaldistributionoftheparticles.Aftercalibration,ourmodelsare capableofpredictingthemid-deliveryandfinalspatialdistributionof186Re-nanoliposomeswithaDice valueof0.69 ± 0.18andaconcordancecorrelationcoefficientof0.88 ± 0.12(mean ± 95%confidence interval),usingonlythepatient-specific,pre-operativeMRIdata,andcalibratedmodelparametersfrom priorpatients.Theseresultsdemonstrateaproof-of-conceptforapatient-specificmodelingframework, whichpredictsthespatialdistributionofnanoparticles.Furtherdevelopmentofthisapproachcould enableoptimizingcatheterplacementforfuturestudiesemployingconvection-enhanceddelivery.

Original languageEnglish
Article number045012
Number of pages15
JournalBiomedical Physics & Engineering Express
Volume7
Issue number4
DOIs
Publication statusPublished - Jul 2021

Funding

We thank the National Institutes of Health for funding through R01 CA235800, T32 EB007507, NCI 1R01 CA186193 and NCI 1U01CA253540, and 1U01 CA174706. We thank CPRIT for funding through RR160005. T.E.Y. is a CPRIT Scholar of Cancer Research. We thank the American Association of Physicists in Medicine for Research Seed Funding. We offer a sincere thank you to all the patients who volunteer to participate in our studies; your strength and courage are examples for all of us.

FundersFunder number
National Institutes of Health
National Cancer InstituteR01CA186193, U01CA253540, R01CA235800, U01CA174706
National Institute of Biomedical Imaging and BioengineeringT32EB007507

    Keywords

    • Computational fluid dynamics
    • Computational oncology
    • Convection-enhanced delivery
    • Glioblastoma multiforme
    • Radiation therapy
    • Glioblastoma/diagnostic imaging
    • Brain Neoplasms/diagnostic imaging
    • Humans
    • Neoplasm Recurrence, Local
    • Radioisotopes
    • Rhenium
    • Convection

    Fingerprint

    Dive into the research topics of 'Patient specific, imaging-informed modeling of rhenium-186 nanoliposome delivery via convection-enhanced delivery in glioblastoma multiforme'. Together they form a unique fingerprint.

    Cite this