TY - JOUR

T1 - Paths, trees and matchings under disjunctive constraints

AU - Darmann, A.

AU - Pferschy, U.

AU - Schauer, J.

AU - Woeginger, G.J.

PY - 2011

Y1 - 2011

N2 - We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints. We prove that the minimum spanning tree problem is strongly NP-hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is NP-hard for conflict graphs where every connected component is a single edge. Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem.

AB - We study the minimum spanning tree problem, the maximum matching problem and the shortest path problem subject to binary disjunctive constraints: A negative disjunctive constraint states that a certain pair of edges cannot be contained simultaneously in a feasible solution. It is convenient to represent these negative disjunctive constraints in terms of a so-called conflict graph whose vertices correspond to the edges of the underlying graph, and whose edges encode the constraints. We prove that the minimum spanning tree problem is strongly NP-hard, even if every connected component of the conflict graph is a path of length two. On the positive side, this problem is polynomially solvable if every connected component is a single edge (that is, a path of length one). The maximum matching problem is NP-hard for conflict graphs where every connected component is a single edge. Furthermore we will also investigate these graph problems under positive disjunctive constraints: In this setting for certain pairs of edges, a feasible solution must contain at least one edge from every pair. We establish a number of complexity results for these variants including APX-hardness for the shortest path problem.

U2 - 10.1016/j.dam.2010.12.016

DO - 10.1016/j.dam.2010.12.016

M3 - Article

VL - 159

SP - 1726

EP - 1735

JO - Discrete Applied Mathematics

JF - Discrete Applied Mathematics

SN - 0166-218X

IS - 16

ER -