Panacea: automating attack classification for anomaly-based network intrusion detection systems

D. Bolzoni, S. Etalle, P.H. Hartel

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

20 Citations (Scopus)

Abstract

Anomaly-based intrusion detection systems are usually criticized because they lack a classification of attacks, thus security teams have to manually inspect any raised alert to classify it. We present a new approach, Panacea, to automatically and systematically classify attacks detected by an anomaly-based network intrusion detection system.
Original languageEnglish
Title of host publicationRecent Advances in Intrusion Detection
Subtitle of host publication12th International Symposium, RAID 2009, Saint-Malo, France, September 23-25, 2009. Proceedings
EditorsE. Kirda, S. Jha, D. Balzarotti
Place of PublicationBerlin
PublisherSpringer
Chapter1
Pages1-20
Number of pages20
ISBN (Electronic)978-3-642-04342-0
ISBN (Print)978-3-642-04341-3
DOIs
Publication statusPublished - 2009

Publication series

NameLecture Notes in Computer Science (LNCS)
Volume5758
ISSN (Print)0302-9743

Fingerprint Dive into the research topics of 'Panacea: automating attack classification for anomaly-based network intrusion detection systems'. Together they form a unique fingerprint.

  • Cite this

    Bolzoni, D., Etalle, S., & Hartel, P. H. (2009). Panacea: automating attack classification for anomaly-based network intrusion detection systems. In E. Kirda, S. Jha, & D. Balzarotti (Eds.), Recent Advances in Intrusion Detection: 12th International Symposium, RAID 2009, Saint-Malo, France, September 23-25, 2009. Proceedings (pp. 1-20). (Lecture Notes in Computer Science (LNCS); Vol. 5758). Springer. https://doi.org/10.1007/978-3-642-04342-0_1