Abstract
We explore the properties of casein/xanthan mixtures for xanthan concentrations beyond those inducing phase separation. Previous work has successfully described the onset of demixing by depletion theory in the protein limit, where the xanthan polysaccharides, the polymers, are larger than the caseins from skim milk powder, the colloids (S. Bhat et al., J. Phys.: Condens. Matter, 2006, L339). We now extend these studies to xanthan concentrations in a range of c/c* = 13-88, aiming to arrest the phase separation via a (transiently) arrested casein-rich phase. Surprisingly, we find that the casein-rich phase remains fluidic deep into the two-phase region, with an equilibrium composition that significantly differs from predictions for mixtures of hard spheres plus flexible polymer chains in a good solvent. Furthermore, we show that macroscopic phase separation is arrested for c/c* > 60. Our investigations reveal that the rheological properties of the mixtures are fully determined by the xanthan-rich phase with characteristic long relaxation times that depend remarkably strongly on the xanthan concentration.
Original language | English |
---|---|
Pages (from-to) | 1547-1555 |
Number of pages | 9 |
Journal | Soft Matter |
Volume | 8 |
Issue number | 5 |
DOIs | |
Publication status | Published - 7 Feb 2012 |
Externally published | Yes |