TY - JOUR
T1 - Optimization of flow direction to minimize particulate fouling of heat exchangers
AU - Abd-Elhady, M.S.
AU - Rindt, C.C.M.
AU - Steenhoven, van, A.A.
PY - 2009
Y1 - 2009
N2 - The influence of flow direction with respect to gravity on particulate fouling of heat exchangers is investigated experimentally to determine the optimal flow direction to minimize fouling. Four orientations of flow have been investigated: horizontal flow, upward flow, downward flow, and a flow under an angle of 45. It is observed that fouling starts at the point of stagnation irrespective of the flow direction, and also at the top of the heat exchanger tubes. Particulate fouling grows from these two points till they meet and the fouling layer covers the whole surface of the heat exchanger tube. Fouling at the upper half of the tubes is much faster than the lower half of the tubes, and the fouling rate is faster at the bottom tubes of the heat exchanger section than at the upper tubes. The best orientation for lingering particulate fouling is the downward flow, where the flow stagnation point coincides with the top point of the heat exchanger tubes and the growth of the fouling layer only starts from one point.
AB - The influence of flow direction with respect to gravity on particulate fouling of heat exchangers is investigated experimentally to determine the optimal flow direction to minimize fouling. Four orientations of flow have been investigated: horizontal flow, upward flow, downward flow, and a flow under an angle of 45. It is observed that fouling starts at the point of stagnation irrespective of the flow direction, and also at the top of the heat exchanger tubes. Particulate fouling grows from these two points till they meet and the fouling layer covers the whole surface of the heat exchanger tube. Fouling at the upper half of the tubes is much faster than the lower half of the tubes, and the fouling rate is faster at the bottom tubes of the heat exchanger section than at the upper tubes. The best orientation for lingering particulate fouling is the downward flow, where the flow stagnation point coincides with the top point of the heat exchanger tubes and the growth of the fouling layer only starts from one point.
U2 - 10.1080/01457630902754142
DO - 10.1080/01457630902754142
M3 - Article
VL - 30
SP - 895
EP - 902
JO - Heat Transfer Engineering
JF - Heat Transfer Engineering
SN - 0145-7632
IS - 10-11
ER -