Optimization and characterization of high-volume limestone powder in sustainable Ultra-high Performance Concrete

Peipeng Li, H.J.H. (Jos) Brouwers, W. Chen (Corresponding author), Q.L. (Qingliang) Yu (Corresponding author)

Research output: Contribution to journalArticleAcademicpeer-review

27 Citations (Scopus)
64 Downloads (Pure)


This paper aims to optimize high-volume limestone powder in sustainable ultra-high performance concrete (UHPC), and characterize its roles on plasticization effect, hydration kinetics, microstructure and hardened properties. The spread flow, hydration products, compressive strength, porosity and pore structure, shrinkage, embedded CO2 emission and unit cost are investigated with different substitution levels of binders by limestone powder, varying from 0 to 80 vol%. Results show that replacing high volume of binders by limestone powder is an efficient way to develop eco-friendly and low-cost UHPC. Limestone powder shows a positive mineral plasticization effect that should be considered in designing UHPC. The degree of secondary pozzolanic hydration is more intensive than C3S/C2S hydration, which can enhance the later-age strength development potential. An appropriate content of limestone powder can contribute to a higher strength, denser pore structure, diminished total free shrinkage and higher sustainability efficiency. The optimum content of limestone powder appears to be 50 vol% of the total powder content in UHPC.
Original languageEnglish
Article number118112
JournalConstruction and Building Materials
Publication statusPublished - 10 May 2020


  • Hydration degree
  • Limestone powder
  • Mineral plasticization
  • Pore structure
  • Sustainability
  • Ultra-high performance concrete


Dive into the research topics of 'Optimization and characterization of high-volume limestone powder in sustainable Ultra-high Performance Concrete'. Together they form a unique fingerprint.

Cite this