TY - JOUR
T1 - Optimal policies for a delay time model with postponed replacement
AU - Oosterom, van, C.D.
AU - Elwany, A.M.H.
AU - Celebi, D.
AU - Houtum, van, G.J.J.A.N.
PY - 2014
Y1 - 2014
N2 - We develop a delay time model (DTM) to determine the optimal maintenance policy under a novel assumption: postponed replacement. Delay time is defined as the time lapse from the occurrence of a defect up until failure. Inspections can be performed to monitor the system state at non-negligible cost. Most works in the literature assume that instantaneous replacement is enforced as soon as a defect is detected at an inspection. In contrast, we relax this assumption and allow replacement to be postponed for an additional time period. The key motivation is to achieve better utilization of the system’s useful life, and reduce replacement costs by providing a sufficient time window to prepare maintenance resources. We model the preventive replacement cost as a non-increasing function of the postponement interval. We then derive the optimal policy under the modified assumption for a system with exponentially distributed defect arrival time, both for a deterministic delay time and a more general random delay time. For the settings with a deterministic delay time, we also establish an upper bound on the cost savings that can be attained. A numerical case study is presented to benchmark the benefits of our modified assumption against conventional instantaneous replacement discussed in the literature.
AB - We develop a delay time model (DTM) to determine the optimal maintenance policy under a novel assumption: postponed replacement. Delay time is defined as the time lapse from the occurrence of a defect up until failure. Inspections can be performed to monitor the system state at non-negligible cost. Most works in the literature assume that instantaneous replacement is enforced as soon as a defect is detected at an inspection. In contrast, we relax this assumption and allow replacement to be postponed for an additional time period. The key motivation is to achieve better utilization of the system’s useful life, and reduce replacement costs by providing a sufficient time window to prepare maintenance resources. We model the preventive replacement cost as a non-increasing function of the postponement interval. We then derive the optimal policy under the modified assumption for a system with exponentially distributed defect arrival time, both for a deterministic delay time and a more general random delay time. For the settings with a deterministic delay time, we also establish an upper bound on the cost savings that can be attained. A numerical case study is presented to benchmark the benefits of our modified assumption against conventional instantaneous replacement discussed in the literature.
U2 - 10.1016/j.ejor.2013.06.038
DO - 10.1016/j.ejor.2013.06.038
M3 - Article
SN - 0377-2217
VL - 232
SP - 186
EP - 197
JO - European Journal of Operational Research
JF - European Journal of Operational Research
IS - 1
ER -