Abstract
In this paper, a mathematical approach for the optimal planning of integrated energy systems is proposed. In order to address the challenges of future, RES-dominated energy systems, the model deliberates between the expansion of traditional energy infrastructures, the integration of these infrastructures using conversion technologies (e.g. gas-to-electricity-and-heat, power-to-heat, power-to-gas), and the placement of energy storage. The model is demonstrated using a representative case study from the city of Eindhoven. Current energy data from 2015 is combined with city development scenarios and sustainability goals for 2030 and 2045. Optimal green- and brownfield designs for a district's future integrated energy system are compared using a one-step, as well as a two-step planning approach. As expected, the greenfield designs are more cost efficient, as their results are not constrained by the existing infrastructure.
Original language | English |
---|---|
Title of host publication | IEEE Manchester PowerTech 2017 |
Place of Publication | Piscataway |
Publisher | Institute of Electrical and Electronics Engineers |
Number of pages | 6 |
ISBN (Electronic) | 978-1-5090-4237-1 |
DOIs | |
Publication status | Published - 13 Jul 2017 |
Event | 12th IEEE PES PowerTech Conference - University of Manchester, Manchester, United Kingdom Duration: 18 Jun 2017 → 22 Jun 2017 Conference number: 12 http://ieee-powertech.org/ |
Conference
Conference | 12th IEEE PES PowerTech Conference |
---|---|
Abbreviated title | PowerTech 2017 |
Country/Territory | United Kingdom |
City | Manchester |
Period | 18/06/17 → 22/06/17 |
Other | Towards and Beyond Sustainable Energy Systems |
Internet address |
Keywords
- optimization
- integrated energy systems planning
- smart cities
- systems modeling