Optical self-switching effects in Mach-Zehnder interferometers

E.A. Patent

Research output: ThesisPhd Thesis 1 (Research TU/e / Graduation TU/e)

1067 Downloads (Pure)

Abstract

Development of modern optical fiber networks puts an increasing demand on the optical hardware. All-optical signal processing components enable the highest switching rates and allow all-optical regeneration of pulse streams without converting the optical signal into electrical current. The subject of our research is self-switching in a Mach-Zehnder interferometer (MZI) and its applications in optical telecommunication networks. In this device, light injected in one of the input ports is unequally distributed over the two interferometer arms. Due to the intensity dependent refractive index in the interferometer arms, there can be a nonlinear phase shift induced between the optical signals of unequal intensities. The two signals therefore interfere destructively or constructively depending on the input power: in this way we obtain nonlinear self-switching. Two mechanisms of nonlinear phase shifting were considered: active, based on semiconductor optical amplifiers (SOAs), and passive, based on quantum dots (QDs). Interferometers of two types were developed: 2-to-2 (two input ports and two output ports) and 2-to-1 (two input ports and one output port). The 2-to-2 SOA-MZIs based on self-switching have been investigated for two applications. One of them is the pattern effect compensator. If SOAs are employed for all-optical signal amplification, e.g. in optical access networks, an unwanted pulse distortion (known also as the pattern effect) takes place, as a result of the SOA gain saturation. Our component allows pattern-free amplification of the optical signals at bitrates up to 20 Gb/s. At 10 Gb/s it shows an extended input power range (up to 7 dB improvement) and comparable gain, which makes it suitable to be used as an optical amplifier. Another application of the 2-to-2 SOA-MZI is a 2R-regenerator. Optical amplifiers used in long distance optical links add noise to the optical signal, causing signal degradation. The signal can be regenerated by passing it through an optical gate with a nonlinear transfer function. The 2-to-2 SOA-MZI has such a nonlinear transfer function. The regeneration capabilities were demonstrated at 2.5 Gb/s by an improvement of the receiver sensitivity of about 2.5 dB. The dynamic characterization of the chips was carried out in a close cooperation with the research group COM at the Technical University of Denmark within the ePIXnet "network of excellence". The 2-to-1 MZI based on self-switching can be used as a low-loss optical combiner. An essential function in optical fiber networks is the combining of optical signals. A serious disadvantage of the conventional type of combiners used in the networks is that they let only half of the power (3 dB) through. In order to compensate for this loss, passive optical combiners are often used in combination with an in-line SOA. The first realization of the low-loss optical combiner uses SOAs as active phase shifters. Such an active low-loss combiner shows an improvement of transmission of over 2 dB compared to a conventional combiner with an in-line SOA. It is therefore expected that the output optical signal-to-noise ratio of the self-switching SOA-MZI is more than 2 dB better than that of a conventional combiner with an in-line SOA. While for the pattern effect compensator and the 2R-regenerator SOAs are used not only for inducing the nonlinear phase shift, but also for sufficient amplification, for the low-loss optical combiner the preferred nonlinear effects should be passive: combination of the signal is a passive function. Therefore, the second realization is based on a novel material, quantum dots. QDs provide improved all-optical nonlinearities resulting in a very small switching energy and large refractive index changes. Such a passive 2-to-1 QD-MZI based on self-switching showed an improvement up to 1.7 dB with respect to a conventional combiner. These improvements have a huge effect on e.g. the power budget in passive optical networks, where a large number of splitting stages are required. The Mach-Zehnder interferometers were realized in the InP/InGaAsP semiconductor material system, which is perfectly suitable for the integration of the photonic integrated circuits for the telecommunication applications. In order to realize both active components (such as e.g. SOAs) and passive components (such as e.g. waveguides, couplers), an active-passive integration technique was applied. This integration was realized in a close cooperation between JDS Uniphase Eindhoven and the COBRA Research Institute. It employs a three-step metal-organic vapor-phase epitaxy regrowth process. The quantum dot material was grown within the COBRA Research Institute. Our MZIs use a ridge waveguide design, for which a reactive ion etching process was developed in the COBRA cleanroom. As a result of photonic integration our integrated Mach-Zehnder interferometers have very small dimensions: less than a square millimeter.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Electrical Engineering
Supervisors/Advisors
  • Smit, Meint, Promotor
  • Lenstra, Daan, Promotor
  • van der Tol, Jos J.G.M., Copromotor
Award date19 Dec 2005
Place of PublicationEindhoven
Publisher
Print ISBNs90-744-4571-3
DOIs
Publication statusPublished - 2005

Fingerprint

Dive into the research topics of 'Optical self-switching effects in Mach-Zehnder interferometers'. Together they form a unique fingerprint.

Cite this