Abstract
Development of modern optical fiber networks puts an increasing demand on the optical
hardware. All-optical signal processing components enable the highest switching
rates and allow all-optical regeneration of pulse streams without converting the optical
signal into electrical current. The subject of our research is self-switching in a
Mach-Zehnder interferometer (MZI) and its applications in optical telecommunication
networks. In this device, light injected in one of the input ports is unequally
distributed over the two interferometer arms. Due to the intensity dependent refractive
index in the interferometer arms, there can be a nonlinear phase shift induced between
the optical signals of unequal intensities. The two signals therefore interfere destructively
or constructively depending on the input power: in this way we obtain nonlinear
self-switching. Two mechanisms of nonlinear phase shifting were considered: active,
based on semiconductor optical amplifiers (SOAs), and passive, based on quantum
dots (QDs). Interferometers of two types were developed: 2-to-2 (two input ports and
two output ports) and 2-to-1 (two input ports and one output port).
The 2-to-2 SOA-MZIs based on self-switching have been investigated for two
applications. One of them is the pattern effect compensator. If SOAs are employed
for all-optical signal amplification, e.g. in optical access networks, an unwanted pulse
distortion (known also as the pattern effect) takes place, as a result of the SOA gain
saturation. Our component allows pattern-free amplification of the optical signals at
bitrates up to 20 Gb/s. At 10 Gb/s it shows an extended input power range (up to 7 dB
improvement) and comparable gain, which makes it suitable to be used as an optical
amplifier. Another application of the 2-to-2 SOA-MZI is a 2R-regenerator. Optical
amplifiers used in long distance optical links add noise to the optical signal, causing
signal degradation. The signal can be regenerated by passing it through an optical
gate with a nonlinear transfer function. The 2-to-2 SOA-MZI has such a nonlinear
transfer function. The regeneration capabilities were demonstrated at 2.5 Gb/s by an
improvement of the receiver sensitivity of about 2.5 dB. The dynamic characterization
of the chips was carried out in a close cooperation with the research group COM at the
Technical University of Denmark within the ePIXnet "network of excellence".
The 2-to-1 MZI based on self-switching can be used as a low-loss optical combiner.
An essential function in optical fiber networks is the combining of optical signals.
A serious disadvantage of the conventional type of combiners used in the networks
is that they let only half of the power (3 dB) through. In order to compensate
for this loss, passive optical combiners are often used in combination with an in-line
SOA. The first realization of the low-loss optical combiner uses SOAs as active phase
shifters. Such an active low-loss combiner shows an improvement of transmission of
over 2 dB compared to a conventional combiner with an in-line SOA. It is therefore
expected that the output optical signal-to-noise ratio of the self-switching SOA-MZI
is more than 2 dB better than that of a conventional combiner with an in-line SOA.
While for the pattern effect compensator and the 2R-regenerator SOAs are used not
only for inducing the nonlinear phase shift, but also for sufficient amplification, for
the low-loss optical combiner the preferred nonlinear effects should be passive: combination
of the signal is a passive function. Therefore, the second realization is based
on a novel material, quantum dots. QDs provide improved all-optical nonlinearities
resulting in a very small switching energy and large refractive index changes. Such a
passive 2-to-1 QD-MZI based on self-switching showed an improvement up to 1.7 dB
with respect to a conventional combiner. These improvements have a huge effect on
e.g. the power budget in passive optical networks, where a large number of splitting
stages are required.
The Mach-Zehnder interferometers were realized in the InP/InGaAsP semiconductor
material system, which is perfectly suitable for the integration of the photonic
integrated circuits for the telecommunication applications. In order to realize both
active components (such as e.g. SOAs) and passive components (such as e.g. waveguides,
couplers), an active-passive integration technique was applied. This integration
was realized in a close cooperation between JDS Uniphase Eindhoven and the COBRA
Research Institute. It employs a three-step metal-organic vapor-phase epitaxy regrowth
process. The quantum dot material was grown within the COBRA Research Institute.
Our MZIs use a ridge waveguide design, for which a reactive ion etching process was
developed in the COBRA cleanroom. As a result of photonic integration our integrated
Mach-Zehnder interferometers have very small dimensions: less than a square
millimeter.
Original language | English |
---|---|
Qualification | Doctor of Philosophy |
Awarding Institution |
|
Supervisors/Advisors |
|
Award date | 19 Dec 2005 |
Place of Publication | Eindhoven |
Publisher | |
Print ISBNs | 90-744-4571-3 |
DOIs | |
Publication status | Published - 2005 |