Abstract
Nonlinear phase noise (Gordon-Mollenauer phase noise) can limit the transmission distance for phase-shift-keyed modulation formats. In this paper, the compensation of nonlinear phase noise by a midlink optical phase conjugation (OPC) is studied. A proof-of-principle experiment is presented showing an over 4-dB improvement in Q factor when OPC is employed in a differential phase-shift-keying (DPSK) system. Also, an ultra long-haul OPC-based differential quadrature phase-shift-keying (DQPSK) transmission experiment is studied to show the impact of self-phase modulation (SPM)-induced impairments, including nonlinear phase noise, in a transmission line. OPC results in a 44% increase in transmission distance when compared to a "conventional" transmission system using dispersion compensating fiber (DCF) for chromatic dispersion compensation.
Original language | English |
---|---|
Pages (from-to) | 54-64 |
Number of pages | 11 |
Journal | Journal of Lightwave Technology |
Volume | 24 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2006 |