Abstract
In an online k-server routing problem, a crew of k servers has to visit points in a metric space as they arrive in real time. Possible objective functions include minimizing the makespan (k-Traveling Salesman Problem) and minimizing the sum of completion times (k-Traveling Repairman Problem). We give competitive algorithms, resource augmentation results and lower bounds for k-server routing problems in a wide class of metric spaces. In some cases the competitive ratio is dramatically better than that of the corresponding single server problem. Namely, we give a 1+O((log¿k)/k)-competitive algorithm for the k-Traveling Salesman Problem and the k-Traveling Repairman Problem when the underlying metric space is the real line. We also prove that a similar result cannot hold for the Euclidean plane.
Original language | English |
---|---|
Pages (from-to) | 470-485 |
Journal | Theory of Computing Systems |
Volume | 45 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2009 |