Abstract
In this paper we discuss the complexity and approximability of the minimum corridor connection problem where, given a rectilinear decomposition of a rectilinear polygon into "rooms", one has to find the minimum length tree along the edges of the decomposition such that every room is incident to a vertex of the tree. We show that the problem is strongly NP-hard and give a subexponential time exact algorithm. For the special case when the room connectivity graph is k-outerplanar the algorithm running time becomes cubic. We develop a polynomial time approximation scheme for the case when all rooms are fat and have nearly the same size. When rooms are fat but are of varying size we give a polynomial time constant factor approximation algorithm.
Original language | English |
---|---|
Pages (from-to) | 939-951 |
Journal | Computational Geometry |
Volume | 42 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2009 |