TY - JOUR
T1 - On the localized phase of a copolymer in an emulsion : subcritical percolation regime
AU - Hollander, den, W.Th.F.
AU - Petrelis, N.R.
PY - 2009
Y1 - 2009
N2 - The present paper is a continuation of the authors work "EURANDOM Report 2007-048". The object of interest is a two-dimensional model of a directed copolymer, consisting of a random concatenation of hydrophobic and hydrophilic monomers, immersed in an emulsion, consisting of large blocks of oil and water arranged in a percolation-type fashion. The copolymer interacts with the emulsion through an interaction Hamiltonian that favors matches and disfavors mismatches between the monomers and the solvents, in such a way that the interaction with the oil is stronger than with the water.
The model has two regimes, supercritical and subcritical, depending on whether the oil blocks percolate or not. In our work "EURANDOM Report 2007-048" we focussed on the supercritical regime and obtained a complete description of the phase diagram, which consists of two phases separated by a single critical curve. In the present paper we focus on the subcritical regime and show that the phase diagram consists of four phases separated by three critical curves meeting in two tricritical points.
AB - The present paper is a continuation of the authors work "EURANDOM Report 2007-048". The object of interest is a two-dimensional model of a directed copolymer, consisting of a random concatenation of hydrophobic and hydrophilic monomers, immersed in an emulsion, consisting of large blocks of oil and water arranged in a percolation-type fashion. The copolymer interacts with the emulsion through an interaction Hamiltonian that favors matches and disfavors mismatches between the monomers and the solvents, in such a way that the interaction with the oil is stronger than with the water.
The model has two regimes, supercritical and subcritical, depending on whether the oil blocks percolate or not. In our work "EURANDOM Report 2007-048" we focussed on the supercritical regime and obtained a complete description of the phase diagram, which consists of two phases separated by a single critical curve. In the present paper we focus on the subcritical regime and show that the phase diagram consists of four phases separated by three critical curves meeting in two tricritical points.
U2 - 10.1007/s10955-008-9663-3
DO - 10.1007/s10955-008-9663-3
M3 - Article
SN - 0022-4715
VL - 134
SP - 209
EP - 241
JO - Journal of Statistical Physics
JF - Journal of Statistical Physics
IS - 2
ER -