Abstract
The application of a combined test-error-correcting procedure is studied to improve the mean time to failure (MTTF) for degrading memory systems with defects. The degradation is characterized by the probability p that within a unit of time a memory cell changes from the operational state to the permanent defect state. Bounds are given on the MTTF and it is shown that, for memories with N words of k information bits, coding gives an improvement in MTTF proportional to (k/n) N(dmin-2)/(dmin -1), where dmin and (k/n) are the minimum distance and the efficiency of the code used, respectively. Thus the time gain for a simple minimum-distance-3 is proportional to N-1. A memory word test is combined with a simple defect-matching code. This yields reliable operation with one defect in a word of length k+2 at a code efficiency k/(k+2).
Original language | English |
---|---|
Pages (from-to) | 902-906 |
Journal | IEEE Transactions on Information Theory |
Volume | 35 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1989 |