On the Bernstein-von Mises phenomenon in the Gaussian white noise model

H. Leahu

Research output: Contribution to journalArticleAcademicpeer-review

29 Citations (Scopus)
121 Downloads (Pure)


We study the Bernstein-von Mises (BvM) phenomenon, i.e., Bayesian credible sets and frequentist confidence regions for the estimation error coincide asymptotically, for the infinite-dimensional Gaussian white noise model governed by Gaussian prior with diagonal-covariance structure. While in parametric statistics this fact is a consequence of (a particular form of) the BvM Theorem, in the nonparametric setup, however, the BvM Theorem is known to fail even in some, apparently, elementary cases. In the present paper we show that BvM-like statements hold for this model, provided that the parameter space is suitably embedded into the support of the prior. The overall conclusion is that, unlike in the parametric setup, positive results regarding frequentist probability coverage of credible sets can only be obtained if the prior assigns null mass to the parameter space.
Original languageEnglish
Pages (from-to)373-404
JournalElectronic Journal of Statistics
Publication statusPublished - 2011


Dive into the research topics of 'On the Bernstein-von Mises phenomenon in the Gaussian white noise model'. Together they form a unique fingerprint.

Cite this