On the behaviour of spatial critical points under gaussian blurring

M. Loog, J.J. Duistermaat, L.M.J. Florack

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

23 Citations (Scopus)


The main theorem we present is a version of a "Folklore Theorem" from scale-space theory for nonnegative compactly supported functions from Rn to R. The theorem states that, if we take the scale in scale-space sufficiently large, the Gaussian-blurred function has only one spatial critical extremum, a maximum, and no other critical points. Two other interesting results concerning nonnegative compactly supported functions, we obtain are 1. a sharp estimate, in terms of the radius of the support, of the scale after which the set of critical points consists of a single maximum; 2. all critical points reside in the convex closure of the support of the function These results show, for example, that all catastrophes take place within a certain compact domain determined by the support of the initial function and the estimate mentioned in 1. To illustrate that the restriction of nonnegativity and compact support cannot be dropped, we give some examples of functions that fail to satisfy the theorem, when at least one assumption is dropped.
Original languageEnglish
Title of host publicationProceedings of the Third International Conference on Scale-Space and Morphology in Computer Vision (Scale Space 2001), July 7–8, 2001, Vancouver, Canada
EditorsM. Kerckhove
Place of PublicationBerlin
ISBN (Print)978-3-540-42317-1
Publication statusPublished - 2001

Publication series

NameLecture Notes in Computer Science
ISSN (Print)0302-9743

Fingerprint Dive into the research topics of 'On the behaviour of spatial critical points under gaussian blurring'. Together they form a unique fingerprint.

Cite this