Abstract
Concurrent Kleene Algebra (CKA) is a formalism to study concurrent programs. Like previous Kleene Algebra extensions, developing a correspondence between denotational and operational perspectives is important, both for foundations and for applications. This paper takes an important step towards such a correspondence, by precisely relating bi-Kleene Algebra (BKA), a fragment of CKA, to a novel type of automata called pomset automata (PAs).
We show that PAs can implement the BKA semantics of series-parallel rational expressions, and that a class of PAs can be translated back to these expressions. We also characterise the behaviour of general PAs in terms of context-free pomset grammars; consequently, universality, equivalence and series-parallel rationality of general PAs are undecidable.
We show that PAs can implement the BKA semantics of series-parallel rational expressions, and that a class of PAs can be translated back to these expressions. We also characterise the behaviour of general PAs in terms of context-free pomset grammars; consequently, universality, equivalence and series-parallel rationality of general PAs are undecidable.
Original language | English |
---|---|
Pages (from-to) | 130-153 |
Number of pages | 24 |
Journal | Journal of Logic and Algebraic Programming |
Volume | 103 |
DOIs | |
Publication status | Published - Feb 2019 |