Abstract
In this paper, we revisit maximum likelihood methods for identification of errors-in-variables systems. We assume that the system admits a parametric description, and that the input is a stochastic ARMA process. The cost function associated with the maximum likelihood criterion is minimized by introducing a new iterative solution scheme based on the expectation-maximization method, which proves fast and easily implementable. Numerical simulations show the effectiveness of the proposed method.
Original language | English |
---|---|
Pages (from-to) | 2824-2829 |
Number of pages | 6 |
Journal | IFAC-PapersOnLine |
Volume | 50 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Jul 2017 |