On image reconstruction from multiscale top points

F.M.W. Kanters, M. Lillholm, R. Duits, B.J.P. Jansen, B. Platel, L.M.J. Florack, B.M. Haar Romenij, ter

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

11 Citations (Scopus)

Abstract

Image reconstruction from a fiducial collection of scale space interest points and attributes (e.g. in terms of image derivatives) can be used to make the amount of information contained in them explicit. Previous work by various authors includes both linear and non-linear image reconstruction schemes. In this paper, the authors present new results on image reconstruction using a top point representation of an image. A hierarchical ordering of top points based on a stability measure is presented, comparable to feature strength presented in various other works. By taking this into account our results show improved reconstructions from top points compared to previous work. The proposed top point representation is compared with previously proposed representations based on alternative feature sets, such as blobs using two reconstruction schemes (one linear, one non-linear). The stability of the reconstruction from the proposed top point representation under noise is also considered.
Original languageEnglish
Title of host publicationScale Space and PDE Methods in Computer Vision (Proceedings 5th International Conference, Hofgeismar, Germany, April 7-9, 2005)
EditorsR. Kimmel, N.A. Sochen, J. Weickert
Place of PublicationBerlin
PublisherSpringer
Pages431-439
ISBN (Print)3-540-25547-8
DOIs
Publication statusPublished - 2005

Publication series

NameLecture Notes in Computer Science
Volume3459
ISSN (Print)0302-9743

Fingerprint Dive into the research topics of 'On image reconstruction from multiscale top points'. Together they form a unique fingerprint.

Cite this