Numerical simulation of bubble formation with a moving contact line using Local Front Reconstruction Method

Research output: Contribution to journalArticleAcademicpeer-review

13 Citations (Scopus)
161 Downloads (Pure)

Abstract

The process of adiabatic bubble formation from an orifice plate occurs in various industrial applications. It is important to understand the dynamics of bubble formation and to develop numerical models to accurately predict the formation dynamics under various operating conditions. For the numerical models, an appropriate contact line boundary condition is necessary since this process may involve a moving contact line, which significantly affects the bubble departure size. In this paper, we extend the Local Front Reconstruction Method by incorporating contact angle dynamics. The predictions of the improved model are extensively verified and validated with experimental and numerical data available in the literature. The problem of three-dimensional bubble injection from an orifice into quiescent water using various volumetric flow rates is used to assess the numerical model under capillary dominant conditions and conditions where the interplay between inertial, viscous, surface tension, and buoyancy forces cause a complex interface deformation.

Original languageEnglish
Pages (from-to)415-431
Number of pages17
JournalChemical Engineering Science
Volume187
DOIs
Publication statusPublished - 21 Sep 2018

    Fingerprint

Keywords

  • Bubble formation
  • Front-tracking
  • Local Front Reconstruction Method
  • Moving contact line
  • Numerical simulation

Cite this