Numerical investigation of the dynamic influence of the contact line region on the macroscopic meniscus shape

I.B. Bajlekov, A.K. Chesters

Research output: Contribution to journalArticleAcademicpeer-review

20 Citations (Scopus)

Abstract

The influence of different boundary conditions applied in the contact line region on the outer meniscus shape is analysed by means of a finite-element numerical simulation of the steady movement of a liquid-gas meniscus in a capillary tube. The free-surface steady shape is obtained by solving the unsteady creeping-flow approximation of the Navier–Stokes equations starting from some initial shape. Comparisons of the outer solutions obtained using two different inner models, together with that published by Lowndes (1980), indicate the relative insensitivity of the outer solution to the type of model utilized in the contact line region.
Original languageEnglish
Pages (from-to)137-146
Number of pages10
JournalJournal of Fluid Mechanics
Volume329
DOIs
Publication statusPublished - 1996

Fingerprint

Dive into the research topics of 'Numerical investigation of the dynamic influence of the contact line region on the macroscopic meniscus shape'. Together they form a unique fingerprint.

Cite this