TY - JOUR
T1 - Non-standard approaches to integer programming
AU - Aardal, K.I.
AU - Weismantel, R.
AU - Wolsey, L.A.
PY - 2002
Y1 - 2002
N2 - In this survey we address three of the principal algebraic approaches to integer programming. After introducing lattices and basis reduction, we first survey their use in integer programming, presenting among others Lenstra's algorithm that is polynomial in fixed dimension, and the solution of diophanine equations using basis reduction. The second topic concerns augmentation algorithms and test sets, including the role played by Hilbert and Gröbner bases in the development of a primal approach to solve a family of problems for all right-hand sides. Thirdly we survey the group approach of Gomory, showing the importance of subadditivity in integer programming and the generation of valid inequalities, as well the relation to the parametric problem cited above of solving for all right-hand sides.
AB - In this survey we address three of the principal algebraic approaches to integer programming. After introducing lattices and basis reduction, we first survey their use in integer programming, presenting among others Lenstra's algorithm that is polynomial in fixed dimension, and the solution of diophanine equations using basis reduction. The second topic concerns augmentation algorithms and test sets, including the role played by Hilbert and Gröbner bases in the development of a primal approach to solve a family of problems for all right-hand sides. Thirdly we survey the group approach of Gomory, showing the importance of subadditivity in integer programming and the generation of valid inequalities, as well the relation to the parametric problem cited above of solving for all right-hand sides.
U2 - 10.1016/S0166-218X(01)00337-7
DO - 10.1016/S0166-218X(01)00337-7
M3 - Article
SN - 0166-218X
VL - 123
SP - 5
EP - 74
JO - Discrete Applied Mathematics
JF - Discrete Applied Mathematics
IS - 1-3
ER -