Non-monochromatic and conflict-free colorings on tree spaces and planar network spaces

Boris Aronov, Mark de Berg, Aleksandar Markovic (Corresponding author), Gerhard Woeginger

Research output: Contribution to journalArticleAcademicpeer-review

181 Downloads (Pure)

Abstract

It is well known that any set of n intervals in R1 admits a non-monochromatic coloring with two colors and a conflict-free coloring with three colors. We investigate generalizations of this result to colorings of objects in more complex 1-dimensional spaces, namely so-called tree spaces and planar network spaces.

Original languageEnglish
Pages (from-to)1081-1100
Number of pages20
JournalAlgorithmica
Volume82
Issue number5
Early online date31 Oct 2019
DOIs
Publication statusPublished - 1 May 2020

Funding

Bonfils-Stanton Foundation Acronym: BSF Funding numbers: 2014/170

FundersFunder number
National Science FoundationCCF-11-17336, CCF-12-18791, CCF-15-40656
Nederlandse Organisatie voor Wetenschappelijk Onderzoek024.002.003

    Keywords

    • Conflict-free coloring
    • Non-monochromatic coloring
    • Planar networks
    • Tree

    Fingerprint

    Dive into the research topics of 'Non-monochromatic and conflict-free colorings on tree spaces and planar network spaces'. Together they form a unique fingerprint.

    Cite this