Neural Langevin Dynamics: Towards Interpretable Neural Stochastic Differential Equations

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

18 Downloads (Pure)

Abstract

Neural Stochastic Differential Equations (NSDE) have been trained as both Variational Autoencoders, and as GANs. However, the resulting Stochastic Differential Equations can be hard to interpret or analyse due to the generic nature of the drift and diffusion fields. By restricting our NSDE to be of the form of Langevin dynamics and training it as a VAE, we obtain NSDEs that lend themselves to more elaborate analysis and to a wider range of visualisation techniques than a generic NSDE. More specifically, we obtain an energy landscape, the minima of which are in one-to-one correspondence with latent states underlying the used data. This not only allows us to detect states underlying the data dynamics in an unsupervised manner but also to infer the distribution of time spent in each state according to the learned SDE. In general, restricting an NSDE to Langevin dynamics enables the use of a large set of tools from computational molecular dynamics for the analysis of the obtained results.

Original languageEnglish
Title of host publicationProceedings of the 5th Northern Lights Deep Learning Conference
EditorsTetiana Lutchyn, Adín Ramírez Rivera, Benjamin Ricaud
PublisherPMLR
Pages130-137
Number of pages8
Publication statusPublished - 2024
Event5th Northern Lights Deep Learning Conference, NLDL 2024 - Tromso, Norway
Duration: 9 Jan 202411 Jan 2024

Publication series

NameProceedings of Machine Learning Research (PMLR)
Volume233
ISSN (Electronic)2640-3498

Conference

Conference5th Northern Lights Deep Learning Conference, NLDL 2024
Country/TerritoryNorway
CityTromso
Period9/01/2411/01/24

Fingerprint

Dive into the research topics of 'Neural Langevin Dynamics: Towards Interpretable Neural Stochastic Differential Equations'. Together they form a unique fingerprint.

Cite this