Abstract
In the Convex Body Chasing problem, we are given an initial point v0 ∊ ℝd and an online sequence of n convex bodies F1, …, Fn. When we receive Fi, we are required to move inside Fi. Our goal is to minimize the total distance traveled. This fundamental online problem was first studied by Friedman and Linial (DCG 1993). They proved an lower bound on the competitive ratio, and conjectured that a competitive ratio depending only on d is possible. However, despite much interest in the problem, the conjecture remains wide open.
We consider the setting in which the convex bodies are nested: Fi ⊃ … ⊃ Fn. The nested setting is closely related to extending the online LP framework of Buchbinder and Naor (ESA 2005) to arbitrary linear constraints. Moreover, this setting retains much of the difficulty of the general setting and captures an essential obstacle in resolving Friedman and Linial's conjecture. In this work, we give a f(d)-competitive algorithm for chasing nested convex bodies in ℝd.
Original language | English |
---|---|
Title of host publication | 29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 |
Editors | Artur Czumaj |
Place of Publication | s.l. |
Publisher | Society for Industrial and Applied Mathematics (SIAM) |
Pages | 1253-1260 |
Number of pages | 8 |
ISBN (Electronic) | 9781611975031 |
DOIs | |
Publication status | Published - 2018 |
Event | 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018) - Astor Crowne Plaza, New Orleans, United States Duration: 7 Jan 2018 → 10 Jan 2018 Conference number: 29 https://www.siam.org/meetings/da18/ |
Conference
Conference | 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018) |
---|---|
Abbreviated title | SODA 2018 |
Country/Territory | United States |
City | New Orleans |
Period | 7/01/18 → 10/01/18 |
Internet address |