Nanosecond repetitively pulsed discharges in N 2 – O 2 mixtures : inception cloud and streamer emergence

S. Chen, L.C.J. Heijmans, R. Zeng, S. Nijdam, U. Ebert

Research output: Contribution to journalArticleAcademicpeer-review

29 Citations (Scopus)
5 Downloads (Pure)

Abstract

We evaluate the nanosecond temporal evolution of tens of thousands of positive discharges in a 16¿cm point-plane gap in high purity nitrogen 6.0 and in N2–O2 gas mixtures with oxygen contents of 100¿ppm, 0.2%, 2% and 20%, for pressures between 66.7 and 200 mbar. The voltage pulses have amplitudes of 20 to 40¿kV with rise times of 20 or 60¿ns and repetition frequencies of 0.1 to 10¿Hz. The discharges first rapidly form a growing cloud around the tip, then they expand much more slowly like a shell and finally after a stagnation stage they can break up into rapid streamers. The radius of cloud and shell in artificial air is about 10% below the theoretically predicted value and scales with pressure p as theoretically expected, while the observed scaling of time scales with p raises questions. We find characteristic dependences on the oxygen content. No cloud and shell stage can be seen in nitrogen 6.0, and streamers emerge immediately. The radius of cloud and shell increases with oxygen concentration. On the other hand, the stagnation time after the shell phase is maximal for the intermediate oxygen concentration of 0.1% and the number of streamers formed is minimal; here the cloud and shell phase seem to be particularly stable against destabilization into streamers.
Original languageEnglish
Pages (from-to)175201-1/12
JournalJournal of Physics D: Applied Physics
Volume48
Issue number17
DOIs
Publication statusPublished - 8 May 2015

Fingerprint

Oxygen
oxygen
Nitrogen
nitrogen
Gas mixtures
radii
destabilization
pulse amplitude
gas mixtures
repetition
purity
Electric potential
scaling
Air
air
electric potential

Keywords

  • pulsed discharge
  • streamer
  • inception cloud

Cite this

@article{89ec60a9237649c88cc438b7a1504831,
title = "Nanosecond repetitively pulsed discharges in N 2 – O 2 mixtures : inception cloud and streamer emergence",
abstract = "We evaluate the nanosecond temporal evolution of tens of thousands of positive discharges in a 16¿cm point-plane gap in high purity nitrogen 6.0 and in N2–O2 gas mixtures with oxygen contents of 100¿ppm, 0.2{\%}, 2{\%} and 20{\%}, for pressures between 66.7 and 200 mbar. The voltage pulses have amplitudes of 20 to 40¿kV with rise times of 20 or 60¿ns and repetition frequencies of 0.1 to 10¿Hz. The discharges first rapidly form a growing cloud around the tip, then they expand much more slowly like a shell and finally after a stagnation stage they can break up into rapid streamers. The radius of cloud and shell in artificial air is about 10{\%} below the theoretically predicted value and scales with pressure p as theoretically expected, while the observed scaling of time scales with p raises questions. We find characteristic dependences on the oxygen content. No cloud and shell stage can be seen in nitrogen 6.0, and streamers emerge immediately. The radius of cloud and shell increases with oxygen concentration. On the other hand, the stagnation time after the shell phase is maximal for the intermediate oxygen concentration of 0.1{\%} and the number of streamers formed is minimal; here the cloud and shell phase seem to be particularly stable against destabilization into streamers.",
keywords = "pulsed discharge, streamer, inception cloud",
author = "S. Chen and L.C.J. Heijmans and R. Zeng and S. Nijdam and U. Ebert",
year = "2015",
month = "5",
day = "8",
doi = "10.1088/0022-3727/48/17/175201",
language = "English",
volume = "48",
pages = "175201--1/12",
journal = "Journal of Physics D: Applied Physics",
issn = "0022-3727",
publisher = "Institute of Physics",
number = "17",

}

Nanosecond repetitively pulsed discharges in N 2 – O 2 mixtures : inception cloud and streamer emergence. / Chen, S.; Heijmans, L.C.J.; Zeng, R.; Nijdam, S.; Ebert, U.

In: Journal of Physics D: Applied Physics, Vol. 48, No. 17, 08.05.2015, p. 175201-1/12.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Nanosecond repetitively pulsed discharges in N 2 – O 2 mixtures : inception cloud and streamer emergence

AU - Chen, S.

AU - Heijmans, L.C.J.

AU - Zeng, R.

AU - Nijdam, S.

AU - Ebert, U.

PY - 2015/5/8

Y1 - 2015/5/8

N2 - We evaluate the nanosecond temporal evolution of tens of thousands of positive discharges in a 16¿cm point-plane gap in high purity nitrogen 6.0 and in N2–O2 gas mixtures with oxygen contents of 100¿ppm, 0.2%, 2% and 20%, for pressures between 66.7 and 200 mbar. The voltage pulses have amplitudes of 20 to 40¿kV with rise times of 20 or 60¿ns and repetition frequencies of 0.1 to 10¿Hz. The discharges first rapidly form a growing cloud around the tip, then they expand much more slowly like a shell and finally after a stagnation stage they can break up into rapid streamers. The radius of cloud and shell in artificial air is about 10% below the theoretically predicted value and scales with pressure p as theoretically expected, while the observed scaling of time scales with p raises questions. We find characteristic dependences on the oxygen content. No cloud and shell stage can be seen in nitrogen 6.0, and streamers emerge immediately. The radius of cloud and shell increases with oxygen concentration. On the other hand, the stagnation time after the shell phase is maximal for the intermediate oxygen concentration of 0.1% and the number of streamers formed is minimal; here the cloud and shell phase seem to be particularly stable against destabilization into streamers.

AB - We evaluate the nanosecond temporal evolution of tens of thousands of positive discharges in a 16¿cm point-plane gap in high purity nitrogen 6.0 and in N2–O2 gas mixtures with oxygen contents of 100¿ppm, 0.2%, 2% and 20%, for pressures between 66.7 and 200 mbar. The voltage pulses have amplitudes of 20 to 40¿kV with rise times of 20 or 60¿ns and repetition frequencies of 0.1 to 10¿Hz. The discharges first rapidly form a growing cloud around the tip, then they expand much more slowly like a shell and finally after a stagnation stage they can break up into rapid streamers. The radius of cloud and shell in artificial air is about 10% below the theoretically predicted value and scales with pressure p as theoretically expected, while the observed scaling of time scales with p raises questions. We find characteristic dependences on the oxygen content. No cloud and shell stage can be seen in nitrogen 6.0, and streamers emerge immediately. The radius of cloud and shell increases with oxygen concentration. On the other hand, the stagnation time after the shell phase is maximal for the intermediate oxygen concentration of 0.1% and the number of streamers formed is minimal; here the cloud and shell phase seem to be particularly stable against destabilization into streamers.

KW - pulsed discharge

KW - streamer

KW - inception cloud

U2 - 10.1088/0022-3727/48/17/175201

DO - 10.1088/0022-3727/48/17/175201

M3 - Article

VL - 48

SP - 175201-1/12

JO - Journal of Physics D: Applied Physics

JF - Journal of Physics D: Applied Physics

SN - 0022-3727

IS - 17

ER -