Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results

Lipeng Ning, Elisenda Bonet-Carne, Francesco Grussu, Farshid Sepehrband, Enrico Kaden, Jelle Veraart, Stefano B. Blumberg, Can Son Khoo, Marco Palombo, Jaume Coll-Font, Benoit Scherrer, Simon K. Warfield, Suheyla Cetin Karayumak, Yogesh Rathi, Simon Koppers, Leon Weninger, Julia Ebert, Dorit Merhof, Daniel Moyer, Maximilian PietschDaan Christiaens, Rui Teixeira, Jacques-Donald Tournier, Andrey Zhylka, Josien Pluim, Greg Parker, Umesh Rudrapatna, John Evans, Cyril Charron, Derek K. Jones, Chantal W. M. Tax

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

1 Citation (Scopus)
3 Downloads (Pure)

Abstract

We present a summary of competition results in the multi-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC). MUSHAC is an open competition intended to stimulate the development of computational methods that reduce scanner- and protocol-related variabilities in multi-shell diffusion MRI data across multi-site studies. Twelve different methods from seven research groups have been tested in this challenge. The results show that cross-vendor harmonization and enhancement can be performed by using suitable computational algorithms such as deep convolutional neural networks. Moreover, parametric models for multi-shell diffusion MRI signals also provide reliable performances.
Original languageEnglish
Title of host publicationComputational Diffusion MRI
Subtitle of host publicationInternational MICCAI Workshop, Granada, Spain, September 2018
EditorsLipeng Ning, Chantal M.W. Tax, Francesco Grussu, Elisenda Bonet-Carne, Farshid Sepehrband
Place of PublicationCham
PublisherSpringer
Chapter18
Pages217-224
Number of pages8
Edition226249
ISBN (Electronic)978-3-030-05831-9
ISBN (Print)978-3-030-05830-2
DOIs
Publication statusPublished - 2019
Event9th International Workshop on Statistical Atlases and Computational Models of the Heart: Atrial Segmentation and LV Quantification Challenges, STACOM 2018, held in conjunction with Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018 - Granada, Spain
Duration: 16 Sep 201816 Sep 2018

Publication series

NameMathematics and Visualization
ISSN (Electronic)1612-3786

Conference

Conference9th International Workshop on Statistical Atlases and Computational Models of the Heart: Atrial Segmentation and LV Quantification Challenges, STACOM 2018, held in conjunction with Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018
CountrySpain
CityGranada
Period16/09/1816/09/18

Fingerprint

Magnetic resonance imaging
Computational methods
Neural networks

Keywords

  • Deep learning
  • Diffusion MRI
  • Harmonisation
  • Parametric model
  • Spherical harmonics

Cite this

Ning, L., Bonet-Carne, E., Grussu, F., Sepehrband, F., Kaden, E., Veraart, J., ... Tax, C. W. M. (2019). Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results. In L. Ning, C. M. W. Tax, F. Grussu, E. Bonet-Carne, & F. Sepehrband (Eds.), Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018 (226249 ed., pp. 217-224). (Mathematics and Visualization). Cham: Springer. https://doi.org/10.1007/978-3-030-05831-9_18
Ning, Lipeng ; Bonet-Carne, Elisenda ; Grussu, Francesco ; Sepehrband, Farshid ; Kaden, Enrico ; Veraart, Jelle ; Blumberg, Stefano B. ; Khoo, Can Son ; Palombo, Marco ; Coll-Font, Jaume ; Scherrer, Benoit ; Warfield, Simon K. ; Karayumak, Suheyla Cetin ; Rathi, Yogesh ; Koppers, Simon ; Weninger, Leon ; Ebert, Julia ; Merhof, Dorit ; Moyer, Daniel ; Pietsch, Maximilian ; Christiaens, Daan ; Teixeira, Rui ; Tournier, Jacques-Donald ; Zhylka, Andrey ; Pluim, Josien ; Parker, Greg ; Rudrapatna, Umesh ; Evans, John ; Charron, Cyril ; Jones, Derek K. ; Tax, Chantal W. M. / Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results. Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018. editor / Lipeng Ning ; Chantal M.W. Tax ; Francesco Grussu ; Elisenda Bonet-Carne ; Farshid Sepehrband. 226249. ed. Cham : Springer, 2019. pp. 217-224 (Mathematics and Visualization).
@inproceedings{20d6fc43b38d47dca091d0b4b01f61b2,
title = "Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results",
abstract = "We present a summary of competition results in the multi-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC). MUSHAC is an open competition intended to stimulate the development of computational methods that reduce scanner- and protocol-related variabilities in multi-shell diffusion MRI data across multi-site studies. Twelve different methods from seven research groups have been tested in this challenge. The results show that cross-vendor harmonization and enhancement can be performed by using suitable computational algorithms such as deep convolutional neural networks. Moreover, parametric models for multi-shell diffusion MRI signals also provide reliable performances.",
keywords = "Deep learning, Diffusion MRI, Harmonisation, Parametric model, Spherical harmonics",
author = "Lipeng Ning and Elisenda Bonet-Carne and Francesco Grussu and Farshid Sepehrband and Enrico Kaden and Jelle Veraart and Blumberg, {Stefano B.} and Khoo, {Can Son} and Marco Palombo and Jaume Coll-Font and Benoit Scherrer and Warfield, {Simon K.} and Karayumak, {Suheyla Cetin} and Yogesh Rathi and Simon Koppers and Leon Weninger and Julia Ebert and Dorit Merhof and Daniel Moyer and Maximilian Pietsch and Daan Christiaens and Rui Teixeira and Jacques-Donald Tournier and Andrey Zhylka and Josien Pluim and Greg Parker and Umesh Rudrapatna and John Evans and Cyril Charron and Jones, {Derek K.} and Tax, {Chantal W. M.}",
year = "2019",
doi = "10.1007/978-3-030-05831-9_18",
language = "English",
isbn = "978-3-030-05830-2",
series = "Mathematics and Visualization",
publisher = "Springer",
pages = "217--224",
editor = "Lipeng Ning and Tax, {Chantal M.W.} and Francesco Grussu and Elisenda Bonet-Carne and Farshid Sepehrband",
booktitle = "Computational Diffusion MRI",
address = "Germany",
edition = "226249",

}

Ning, L, Bonet-Carne, E, Grussu, F, Sepehrband, F, Kaden, E, Veraart, J, Blumberg, SB, Khoo, CS, Palombo, M, Coll-Font, J, Scherrer, B, Warfield, SK, Karayumak, SC, Rathi, Y, Koppers, S, Weninger, L, Ebert, J, Merhof, D, Moyer, D, Pietsch, M, Christiaens, D, Teixeira, R, Tournier, J-D, Zhylka, A, Pluim, J, Parker, G, Rudrapatna, U, Evans, J, Charron, C, Jones, DK & Tax, CWM 2019, Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results. in L Ning, CMW Tax, F Grussu, E Bonet-Carne & F Sepehrband (eds), Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018. 226249 edn, Mathematics and Visualization, Springer, Cham, pp. 217-224, 9th International Workshop on Statistical Atlases and Computational Models of the Heart: Atrial Segmentation and LV Quantification Challenges, STACOM 2018, held in conjunction with Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, Granada, Spain, 16/09/18. https://doi.org/10.1007/978-3-030-05831-9_18

Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results. / Ning, Lipeng; Bonet-Carne, Elisenda; Grussu, Francesco; Sepehrband, Farshid; Kaden, Enrico; Veraart, Jelle; Blumberg, Stefano B.; Khoo, Can Son; Palombo, Marco; Coll-Font, Jaume; Scherrer, Benoit; Warfield, Simon K. ; Karayumak, Suheyla Cetin; Rathi, Yogesh; Koppers, Simon; Weninger, Leon; Ebert, Julia; Merhof, Dorit; Moyer, Daniel; Pietsch, Maximilian; Christiaens, Daan; Teixeira, Rui; Tournier, Jacques-Donald; Zhylka, Andrey; Pluim, Josien; Parker, Greg; Rudrapatna, Umesh; Evans, John; Charron, Cyril; Jones, Derek K.; Tax, Chantal W. M.

Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018. ed. / Lipeng Ning; Chantal M.W. Tax; Francesco Grussu; Elisenda Bonet-Carne; Farshid Sepehrband. 226249. ed. Cham : Springer, 2019. p. 217-224 (Mathematics and Visualization).

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademic

TY - GEN

T1 - Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results

AU - Ning, Lipeng

AU - Bonet-Carne, Elisenda

AU - Grussu, Francesco

AU - Sepehrband, Farshid

AU - Kaden, Enrico

AU - Veraart, Jelle

AU - Blumberg, Stefano B.

AU - Khoo, Can Son

AU - Palombo, Marco

AU - Coll-Font, Jaume

AU - Scherrer, Benoit

AU - Warfield, Simon K.

AU - Karayumak, Suheyla Cetin

AU - Rathi, Yogesh

AU - Koppers, Simon

AU - Weninger, Leon

AU - Ebert, Julia

AU - Merhof, Dorit

AU - Moyer, Daniel

AU - Pietsch, Maximilian

AU - Christiaens, Daan

AU - Teixeira, Rui

AU - Tournier, Jacques-Donald

AU - Zhylka, Andrey

AU - Pluim, Josien

AU - Parker, Greg

AU - Rudrapatna, Umesh

AU - Evans, John

AU - Charron, Cyril

AU - Jones, Derek K.

AU - Tax, Chantal W. M.

PY - 2019

Y1 - 2019

N2 - We present a summary of competition results in the multi-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC). MUSHAC is an open competition intended to stimulate the development of computational methods that reduce scanner- and protocol-related variabilities in multi-shell diffusion MRI data across multi-site studies. Twelve different methods from seven research groups have been tested in this challenge. The results show that cross-vendor harmonization and enhancement can be performed by using suitable computational algorithms such as deep convolutional neural networks. Moreover, parametric models for multi-shell diffusion MRI signals also provide reliable performances.

AB - We present a summary of competition results in the multi-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC). MUSHAC is an open competition intended to stimulate the development of computational methods that reduce scanner- and protocol-related variabilities in multi-shell diffusion MRI data across multi-site studies. Twelve different methods from seven research groups have been tested in this challenge. The results show that cross-vendor harmonization and enhancement can be performed by using suitable computational algorithms such as deep convolutional neural networks. Moreover, parametric models for multi-shell diffusion MRI signals also provide reliable performances.

KW - Deep learning

KW - Diffusion MRI

KW - Harmonisation

KW - Parametric model

KW - Spherical harmonics

UR - http://www.scopus.com/inward/record.url?scp=85066914373&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-05831-9_18

DO - 10.1007/978-3-030-05831-9_18

M3 - Conference contribution

SN - 978-3-030-05830-2

T3 - Mathematics and Visualization

SP - 217

EP - 224

BT - Computational Diffusion MRI

A2 - Ning, Lipeng

A2 - Tax, Chantal M.W.

A2 - Grussu, Francesco

A2 - Bonet-Carne, Elisenda

A2 - Sepehrband, Farshid

PB - Springer

CY - Cham

ER -

Ning L, Bonet-Carne E, Grussu F, Sepehrband F, Kaden E, Veraart J et al. Muti-shell diffusion MRI harmonisation and enhancement challenge (MUSHAC): progress and results. In Ning L, Tax CMW, Grussu F, Bonet-Carne E, Sepehrband F, editors, Computational Diffusion MRI: International MICCAI Workshop, Granada, Spain, September 2018. 226249 ed. Cham: Springer. 2019. p. 217-224. (Mathematics and Visualization). https://doi.org/10.1007/978-3-030-05831-9_18