Multiscale anisotropic fluctuations in sheared turbulence with multiple states

K.P. Iyer, F. Bonaccorso, L. Biferale, F. Toschi

Research output: Contribution to journalArticleAcademicpeer-review

18 Citations (Scopus)
163 Downloads (Pure)


We use high resolution direct numerical simulations to study the anisotropic contents of a turbulent, statistically homogeneous flow with random transitions among multiple energy containing states. We decompose the velocity correlation functions on different sectors of the three dimensional group of rotations, SO(3), using a high-precision quadrature. Scaling properties of anisotropic components of longitudinal and transverse velocity fluctuations are accurately measured at changing Reynolds numbers. We show that independently of the anisotropic content of the energy containing eddies, small-scale turbulent fluctuations recover isotropy and universality faster than previously reported in experimental and numerical studies. The discrepancies are ascribed to the presence of highly anisotropic contributions that have either been neglected or measured with less accuracy in the foregoing works. Furthermore, the anomalous anisotropic scaling exponents are devoid of any sign of saturation with increasing order. Our study paves the way to systematically assess persistence of anisotropy in high Reynolds number flows.
Original languageEnglish
Article number052602
Number of pages9
JournalPhysical Review Fluids
Issue number5
Publication statusPublished - 30 May 2017


Dive into the research topics of 'Multiscale anisotropic fluctuations in sheared turbulence with multiple states'. Together they form a unique fingerprint.

Cite this