Multilevel domain decomposition-based architectures for physics-informed neural networks

Victorita Dolean, Alexander Heinlein, Siddhartha Mishra, Ben Moseley (Corresponding author)

    Research output: Contribution to journalArticleAcademicpeer-review

    13 Citations (Scopus)
    25 Downloads (Pure)

    Abstract

    Physics-informed neural networks (PINNs) are a powerful approach for solving problems involving differential equations, yet they often struggle to solve problems with high frequency and/or multi-scale solutions. Finite basis physics-informed neural networks (FBPINNs) improve the performance of PINNs in this regime by combining them with an overlapping domain decomposition approach. In this work, FBPINNs are extended by adding multiple levels of domain decompositions to their solution ansatz, inspired by classical multilevel Schwarz domain decomposition methods (DDMs). Analogous to typical tests for classical DDMs, we assess how the accuracy of PINNs, FBPINNs and multilevel FBPINNs scale with respect to computational effort and solution complexity by carrying out strong and weak scaling tests. Our numerical results show that the proposed multilevel FBPINNs consistently and significantly outperform PINNs across a range of problems with high frequency and multi-scale solutions. Furthermore, as expected in classical DDMs, we show that multilevel FBPINNs improve the accuracy of FBPINNs when using large numbers of subdomains by aiding global communication between subdomains.

    Original languageEnglish
    Article number117116
    Number of pages21
    JournalComputer Methods in Applied Mechanics and Engineering
    Volume429
    DOIs
    Publication statusPublished - 1 Sept 2024

    Bibliographical note

    Publisher Copyright:
    © 2024 The Author(s)

    Keywords

    • Differential equations
    • Forward modeling
    • Multi-scale modeling
    • Multilevel methods
    • Overlapping domain decomposition methods
    • Physics-informed neural networks
    • Spectral bias

    Fingerprint

    Dive into the research topics of 'Multilevel domain decomposition-based architectures for physics-informed neural networks'. Together they form a unique fingerprint.

    Cite this