TY - JOUR
T1 - Multi-scale modeling of dispersed gas-liquid two-phase flow
AU - Deen, N.G.
AU - Sint Annaland, van, M.
AU - Kuipers, J.A.M.
PY - 2004
Y1 - 2004
N2 - In this work the concept of multi-scale modeling is demonstrated. The idea of this approach is to use different levels of modeling, each developed to study phenomena at a certain length scale. Information obtained at the level of small length scales can be used to provide closure information at the level of larger length scales. In this work the front tracking model is used to simulate the rise of a single bubble in a quiescent liquid and in a shear field. The results of the front tracking model are used to obtain coefficients for the drag, virtual mass and lift forces that are required in the Euler–Lagrange model used to study the behavior of dispersed gas–liquid flow on a larger scale. Finally, the Euler–Lagrange model, equipped with the correct closure information is used to simulate the flow in a square cross-sectioned bubble column. It is found that the results of the Euler–Lagrange model are in good agreement with experimental data.
AB - In this work the concept of multi-scale modeling is demonstrated. The idea of this approach is to use different levels of modeling, each developed to study phenomena at a certain length scale. Information obtained at the level of small length scales can be used to provide closure information at the level of larger length scales. In this work the front tracking model is used to simulate the rise of a single bubble in a quiescent liquid and in a shear field. The results of the front tracking model are used to obtain coefficients for the drag, virtual mass and lift forces that are required in the Euler–Lagrange model used to study the behavior of dispersed gas–liquid flow on a larger scale. Finally, the Euler–Lagrange model, equipped with the correct closure information is used to simulate the flow in a square cross-sectioned bubble column. It is found that the results of the Euler–Lagrange model are in good agreement with experimental data.
U2 - 10.1016/j.ces.2004.01.038
DO - 10.1016/j.ces.2004.01.038
M3 - Article
SN - 0009-2509
VL - 59
SP - 1853
EP - 1861
JO - Chemical Engineering Science
JF - Chemical Engineering Science
IS - 8-9
ER -