Multi-scale energy-based failure modeling of bond pad structures

O. van der Sluis, R.B.R. van Silfhout, R. A.B. Engelen, W.D. van Driel, G. Q. Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

2 Citations (Scopus)

Abstract

Thermo-mechanical reliability issues have been identified as major bottlenecks in the development of future microelectronic components. This is caused by the following technology and business trends: (1) increasing miniaturisation, (2) introduction of new materials, (3) shorter time-to-market, (4) increasing design complexity and decreasing design margins, (5) shortened development and qualification times, (5) gap between technology and fundamental knowledge development [22]: It is now well estaba lished that for future CMOS-teclmologies (CMOS065 and beyond), low-k dielectric materials will be integrated in the back-end structures [8]. However, bad mechanical integrity as well as weak interfacial adhesion result in major thermo-mechanical reliability issues. Especially the forces resulting from packaging related processes such as dicing, wire bonding, bumping and molding are critical and can easily induce cracking, delamination and chipping of the IC back end .structure, when no appropriate development is performed [4]. The scope of this paper is on the development of numerical models that are able to predict the failure sensitivity of complex three-dimensional multi-layered structures while taking into account the details at the local scale of the microelectronic components by means of a multi-scale method. The damage sensitivity is calculated by means of an enhanced version of the previously introduced Area Release Energy (ARE) criterion. This enhancement results in an efficient and accurate prediction of the energy release rate (ERR) at a selected, bimaterial interface in any location. Moreover, due to the two-scale approach, local details of the structure are readily taken into account In order to evaluate the efficiency and accuracy of the proposed method, several two-dimensional and three-dimensional benchmarks will be simulated. The paper focusses on the enhanced ARE method, including several two- and three-dimensional benchmarks.

Original languageEnglish
Title of host publication2007 International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems. EuroSime 2007
Place of PublicationPiscataway
PublisherInstitute of Electrical and Electronics Engineers
Number of pages6
ISBN (Print)1-4244-1105-X
DOIs
Publication statusPublished - 27 Nov 2007
EventEuroSime 2007: International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, 2007 - London, United Kingdom
Duration: 16 Apr 200718 Apr 2007

Conference

ConferenceEuroSime 2007: International Conference on Thermal, Mechanical and Multi-Physics Simulation Experiments in Microelectronics and Micro-Systems, 2007
CountryUnited Kingdom
CityLondon
Period16/04/0718/04/07

Fingerprint Dive into the research topics of 'Multi-scale energy-based failure modeling of bond pad structures'. Together they form a unique fingerprint.

Cite this