Multi-objective optimization of RF circuit blocks via surrogate models and NBI and SPEA2 methods

L. De Tommasi, T.G.J. Beelen, M.F. Sevat, J. Rommes, E.J.W. Maten, ter

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

Abstract

Multi-objective optimization techniques can be categorized globally into deterministic and evolutionary methods. Examples of such methods are the Normal Boundary Intersection (NBI) method and the Strength Pareto Evolutionary Algorithm (SPEA2), respectively. With both methods one explores trade-offs between conflicting performances. Surrogate models can replace expensive circuit simulations so enabling faster computation of circuit performances. As surrogate models of behavioral parameters and performance outcomes, we consider look-up tables with interpolation and Neural Network models.
Original languageEnglish
Title of host publicationProgress in Industrial Mathematics at ECMI 2010
EditorsM. Günther, A. Bartel, M. Brunk, S. Schoeps, M. Striebel
Place of PublicationBerlin
PublisherSpringer
Pages195-201
ISBN (Print)978-3-642-25099-6
DOIs
Publication statusPublished - 2012
Event16th European Conference on Mathematics for Industry (ECMI 2010), July 26-30, 2010, Wuppertal, Germany - Wuppertal, Germany
Duration: 26 Jul 201030 Jul 2010

Publication series

NameMathematics in Industry
Volume17
ISSN (Print)1612-3956

Conference

Conference16th European Conference on Mathematics for Industry (ECMI 2010), July 26-30, 2010, Wuppertal, Germany
Abbreviated titleECMI 2010
CountryGermany
CityWuppertal
Period26/07/1030/07/10

Fingerprint Dive into the research topics of 'Multi-objective optimization of RF circuit blocks via surrogate models and NBI and SPEA2 methods'. Together they form a unique fingerprint.

  • Cite this

    De Tommasi, L., Beelen, T. G. J., Sevat, M. F., Rommes, J., & Maten, ter, E. J. W. (2012). Multi-objective optimization of RF circuit blocks via surrogate models and NBI and SPEA2 methods. In M. Günther, A. Bartel, M. Brunk, S. Schoeps, & M. Striebel (Eds.), Progress in Industrial Mathematics at ECMI 2010 (pp. 195-201). (Mathematics in Industry; Vol. 17). Springer. https://doi.org/10.1007/978-3-642-25100-9_23